Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-06T06:02:39.875Z Has data issue: false hasContentIssue false

Expression of voltage-activated calcium channels in the early zebrafish embryo

Published online by Cambridge University Press:  01 May 2009

Dayán Sanhueza
Affiliation:
Program in Physiology and Biophysics, Institute for Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile.
Andro Montoya
Affiliation:
Program in Physiology and Biophysics, Institute for Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile.
Jimena Sierralta
Affiliation:
Program in Physiology and Biophysics, Institute for Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile.
Manuel Kukuljan*
Affiliation:
Program in Physiology and Biophysics, Institute for Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile.
*
All correspondence to: Manuel Kukuljan. Program in Physiology and Biophysics, Institute for Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile. Tel: +56 2 978-6707. Fax: +56 2 777-6916. e-mail: kukuljan@neuro.med.uchile.cl

Summary

Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, R., Devogelaere, B., Fabes, J., Tunwell, R.E., Koh, K.R., De Smedt, H. & Patel, S. (2007). Molecular and functional characterization of inositol trisphosphate receptors during early zebrafish development. J. Biol. Chem. 282, 13984–93.CrossRefGoogle ScholarPubMed
Dale, B., Talevi, R. & DeFelice, L.J. (1991). L-type Ca2+ currents in ascidian eggs. Exp. Cell Res. 192, 302–6.CrossRefGoogle ScholarPubMed
Dale, B., Yazaki, I. & Tosti, E. (1997). Polarized distribution of L-type calcium channels in early sea urchin embryos. Am. J. Physiol. 273, C8225.CrossRefGoogle ScholarPubMed
Ebert, A.M., McAnelly, C.A., Srinivasan, A., Linker, J.L., Horne, W.A. & Garrity, D.M. (2008). Ca2+ channel-independent requirement for MAGUK family CACNB4 genes in initiation of zebrafish epiboly. Proc. Natl. Acad. Sci. USA 105, 198203.CrossRefGoogle ScholarPubMed
Kukuljan, M., Rojas, E., Catt, K.J. & Stojilkovic, S.S. (1994). Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J. Biol. Chem. 269, 4860–5.CrossRefGoogle ScholarPubMed
Leclerc, C., Néant, I., Webb, S.E., Miller, A.L. & Moreau, M. (2006). Calcium transients and calcium signalling during early neurogenesis in the amphibian embryo Xenopus laevis. Biochim. Biophys. Acta 1763, 1184–91.CrossRefGoogle ScholarPubMed
Lee, K.W., Webb, S.E. & Miller, A.L. (2003). Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int. J. Dev. Biol. 47, 411–21.Google ScholarPubMed
Lee, K.W., Webb, S.E. & Miller, A.L. (2006). Requirement for a localized, IP3R-generated Ca2+ transient during the furrow positioning process in zebrafish zygotes. Zygote 14, 143–55.CrossRefGoogle ScholarPubMed
Novak, A.E., Jost, M.C., Lu, Y., Taylor, A.D., Zakon, H.H. & Ribera, A.B. (2006). Gene duplications and evolution of vertebrate voltage-gated sodium channels. J. Mol. Evol. 63, 208–21.CrossRefGoogle ScholarPubMed
Palma, V., Kukuljan, M. & Mayor, R. (2001). Calcium mediates dorsoventral patterning of mesoderm in Xenopus. Curr. Biol. 11, 1606–10.CrossRefGoogle ScholarPubMed
Rottbauer, W., Baker, K., Wo, Z.G., Mohideen, M-A., Cantiello, H.F. & Fishman, M.C. (2001). Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel 1 subunit. Dev. Cell 1, 265–75.CrossRefGoogle Scholar
Schneider, I., Houston, D.W., Rebagliati, M.R. & Slusarski, D.C. (2008). Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left–right patterning. Development 135, 7584.CrossRefGoogle ScholarPubMed
Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K.W., De Robertis, E.M &, Nüsslein-Volhard, C. (1994). Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843–52.CrossRefGoogle ScholarPubMed
Sidi, S., Busch-Nentwich, E., Friedrich, R., Schoenberger, U. & Nicolson, T. (2004). gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J. Neurosci. 24, 4213–23.CrossRefGoogle ScholarPubMed
Slusarski, D.C. & Pelegri, F. (2007). Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev. Biol. 307, 113.CrossRefGoogle ScholarPubMed
Webb, S.E., Moreau, M., Leclerc, C. & Miller, A.L. (2005). Calcium transients and neural induction in vertebrates. Cell Calcium 37, 375–85.CrossRefGoogle ScholarPubMed
Webb, S.E. & Miller, A.L. (2006). Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development. Biochim. Biophys. Acta. 1763, 1192–208.CrossRefGoogle ScholarPubMed
Whitaker, M. (2006). Calcium at fertilization and in early development. Physiol Rev. 86, 2588.CrossRefGoogle ScholarPubMed
Yazaki, I., Tosti, E. & Dale, B. (1995). Cytoskeletal elements link calcium channel activity and the cell cycle in early sea urchin embryos. Development 121, 1827–31.CrossRefGoogle Scholar