Skip to main content Accessibility help
×
Home

Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles

  • M.V.A. Saraiva (a1), J.J.H. Celestino (a2), V.R. Araújo (a2), R.N. Chaves (a2), A.P. Almeida (a2), I.B. Lima-Verde (a2), A.B.G. Duarte (a2), G.M. Silva (a2), F.S. Martins (a2), J.B. Bruno (a2), M.H.T. Matos (a2), C.C. Campello (a2), J.R.V. Silva (a3) and J.R. Figueiredo (a2)...

Summary

This study evaluated the expression of FSH receptors (FSHR) in the different stages of goat follicle development and investigated whether the addition of increasing concentrations of FSH throughout the culture period influences the survival, growth and antral formation of in vitro-cultured caprine preantral follicles. The expression of FSHR was analysed before and after culturing follicles using real-time RT-PCR. For the culture, preantral follicles (≥150 μm) were isolated from ovarian fragments and cultured for 18 days in α-MEM+ alone or associated with recombinant FSH (rFSH: 100 or 1000 ng/ml), or in α-MEM+ supplemented with increasing concentrations of FSH throughout culture periods as follows: (a) sequential medium 1: FSH 100 ng/ml (from day 0 to 6), FSH 500 ng/ml (from day 6 to 12) and FSH 1000 ng/ml (from day 12 to 18); and (b) sequential medium 2: FSH 500 ng/ml (from day 0 to 9) and 1000 ng/ml (from day 9 to 18). Follicle development was evaluated on the basis of antral cavity formation, follicular and oocyte growth, and cumulus–oocyte complex health. The expression of FSHR in isolated caprine follicles increased from the preantral to antral phase. Regarding the culture, after 18 days, sequential medium 1 promoted follicular survival, antrum formation and a reduction in oocyte extrusion. Both sequential media promoted a higher rate of meiotic resumption compared with the other treatments. In conclusion, the addition of increased concentrations of FSH (sequential medium) has a significant impact on the in vitro development of caprine preantral follicles.

Copyright

Corresponding author

All correspondence to: M.V.A. Saraiva. Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais (LAMOFOPA), Universidade Estadual do Ceará (UECE), Av. Paranjana, 1700, Campus do Itaperi, Fortaleza–CE–Brasil, CEP: 60740–000. Tel: +55 85 3101 9852; Fax: +55 85 3101 9840. e-mail address: vivi_veterinaria@yahoo.com.br

References

Hide All
Adriaens, I., Cortvrindt, R. & Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398408.
Braw, R.H. & Tsafriri, A. (1980). Follicles explanted from pentobarbitone treated rats provide a model for atresia. J. Reprod. Fertil. 59, 259–65.
Byskov, A.G., Andersen, Y., Hossaini, C. & Guoliang, X.A. (1997). Cumulus cells of oocyte–cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol. Reprod. Dev. 46, 296305.
Chappel, S.C. & Howles, C. (1991). Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum. Reprod. 6, 1206–12.
Chaves, R.N., Martins, F.S., Saraiva, M.V., Celestino, J.J.H., Lopes, C.A., Correia, J.C., Verde, I.B., Matos, M.H., Báo, S.N., Name, K.P. et al. (2008). Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro. Reprod. Fertil. Dev. 20, 640–7.
Chun, S.Y., Eisenhauer, K.M., Minami, S., Billig, H., Perlas, E. & Hsueh, A.J. (1996). Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137, 1447–56.
Cortvrindt, R., Smitz, J. & van Steirteghem, A.C. (1997). Assesment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum. Reprod. 12, 759–68.
Cortvrindt, R.G., Hu, Y., Liu, J. & Smitz, J.E. (1998a). Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotrophin. Fertil. Steril. 70, 1114–25.
Cortvrindt, R., Hu, Y. & Smitz, J. (1998b). Recombinant luteinizing hormone as a survival and differentiation factor increases oocyte maturation in recombinant follicle stimulating hormone-supplemented mouse preantral follicle culture. Hum. Reprod. 13, 1292–302.
Dierich, A., Sairam, M.R., Monaco, L., Fimia, G.M., Gansmuller, A., LeMeur, M. & Sassone-Corsi, P. (1998). Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. USA 95, 13612–7.
Dufour, J., Cahill, L. & Mauleon, P. (1979). Short and long-term effects of hypophysectomy and unilateral ovariectomy on ovarian follicular populations in sheep. J. Reprod. Fertil. 57, 301–9.
Eppig, J.J. & O'Brian, M.J. (1998). Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo. Theriogenology 49, 415–22.
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2004). Oocyte-somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82/83, 431–46.
Gudermann, T., Nürnberg, B. & Schultz, G. (1995). Receptors and G proteins as primary components of transmembrane signal transduction. I. G-protein-coupled receptors: structure and function. J. Mol. Med. 73, 5163.
Gupta, P.S.P., Ramesh, H.S., Manjunatha, B.M., Nandi, S. & Ravindra, J.P. (2008). Production of buffalo embryos using oocytes from in vitro grown preantral follicles. Zygote 16, 5763.
Gutierrez, C.G., Ralph, J.H., Telfer, E.E., Wilmut, I. & Webb, R. (2000). Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol. Reprod. 62, 1322–8.
Hirshfield, A.N. (1991). Development of follicles in the mammalian ovary. Int. Rev. Cytol. 124, 43101.
Hsueh, A.J.W. & LaPolt, P.S. (1992). Molecular basis of gonadotropin receptor regulation. Trends Endocrinol. Metab. 3, 164–70.
Hunzicker-Dunn, M. & Maizels, E.T. (2006). FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal 18, 1351–9.
Itoh, T., Kacchi, M., Abe, H., Sendai, Y. & Hoshi, H. (2002). Growth, antrum formation, and estradiol production of bovine preantral follicles cultured in a serum-free medium. Biol. Reprod. 67, 1099–105.
Knight, P.G. & Glister, C. (2006). TGF-β superfamily members and ovarian follicle development. Reproduction 132, 191206.
Kumar, T.R., Wang, Y., Lu, N. & Matzuk, M.M. (1997). Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15, 201–4.
LaPolt, P.S., Tilly, J.L., Aihara, T., Nishimori, K. & Hsueh, A.J.W. (1992). Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare's serum gonadotropin, human chorionic gonadotropin, and recombinant FSH. Endocrinology 130, 1289–95.
Lucci, C.M., Amorim, C.A., Báo, S.N., Figueiredo, J.R., Rodrigues, A.P.R., Silva, J.R. & Gonçalves, P.B.D. (1999). Effect of the interval of serial sections of ovarian in the tissue chopper on the number of isolated caprine preantral follicles. Anim. Reprod. Sci. 56, 3949.
Mao, J., Wu, G., Smith, M.F., Mccauley, T.C., Cantley, T.C., Prather, R.S., Didion, B.A. & Day, B.N. (2002). Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol. Reprod. 67, 1197–203.
Mao, J., Smith, M.F., Rucker, E.B., Wu, G.M., McCauley, T.C., Cantley, T.C., Prather, R.S., Didion, B.A. & Day, B.N. (2004). Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosal cell proliferation and suppression of apoptosis in vitro. J. Anim. Sci. 82, 1967–75.
Markstrom, E., Svensson, E.Ch., Shao, R., Svanberg, B. & Billig, H. (2002). Survival factors regulating ovarian apoptosis—dependence on follicle differentiation. Reproduction 123, 2330.
Matos, M.H.T., Lima-Verde, I.B., Luque, M.C.A., Maia, J.E. Jr, Silva, J.R., Celestino, J.J.H., Martins, F.S., Báo, S.N., Lucci, A.M. & Figueiredo, J.R. (2007). Essential role of follicle stimulating hormone in the maintenance of caprine preantral follicle viability in vitro. Zygote 15, 173–82.
McGee, E.A., Perlas, E., LaPolt, P.S., Tsafriri, A. & Hsueh, A.J. (1997). Follicle-stimulating hormone enhances the development of preantral follicles in juvenile rats. Biol. Reprod. 57, 990–8.
McNatty, K., Fidler, A., Juengel, J., Quirke, L.D., Smith, P.R., Heath, D.A., Lundy, T., O'Connell, A. & Tisdall, D.J. (2000). Growth and paracrine factors regulating follicular formation and cellular function. J. Mol. Endocrinol. 163, 1120.
Méduri, G., Charnaux, N., Driancourt, M.A., Combettes, L., Granet Vannier, B., Loosfelt, H. & Migrom, E. (2002). Follicle-stimulating hormone receptors in oocytes? J. Clin. Endocrinol. Metab. 87, 2266–76.
Moor, R. & Dai, Y. (2001). Maturation of pig oocytes in vivo and in vitro. Reproduction 58, 91104.
O'Shaughnessy, P.J., McLelland, D. & McBride, M.W. (1997). Regulation of luteinizing hormone-receptor and follicle stimulating hormone-receptor messenger ribonucleic acid levels during development in the neonatal mouse ovary. Biol. Reprod. 57, 602–8.
Roy, S. & Greenwald, G. (1996). Follicular development through preantral stages: signalling via growth factors. J. Reprod. Fertil. 50, 8394.
Roy, S.K. & Terada, D.M. (1999). Activities of glucose metabolic enzymes in human preantral follicles: in vitro modulation by follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, insulin-like growth factor I, and transforming growth factor. Biol. Reprod. 60, 763–8.
Saraiva, M.V.A., Celestino, J.J.H., Chaves, R.N., Martins, F.S., Bruno, J.B., Lima-Verde, I.B., Matos, M.H.T., Silva, G.M., Porfirio, E.P., Báo, S.N. et al. (2008). Influence of different concentrations of LH and FSH on in vitro caprine primordial ovarian follicle development. Small Rum. Res. 78, 8795.
Sasson, R., Rimon, E., Dantes, A., Cohen, T., Shinder, V., Land-Bracha, A. & Amsterdam, A. (2004). Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases. Mol. Hum. Reprod. 10, 299311.
Silva, J.M., Hamel, M., Sahmi, M. & Price, C.A. (2006). Control of oestradiol secretion and of cytochrome P450 aromatase messenger ribonucleic acid accumulation by FSH involves different intracellular pathways in oestrogenic bovine granulosa cells in vitro. Reproduction 132, 909–17.
Simoni, M. & Nieschlag, E. (1995). FSH in therapy: physiological basis, new preparations and clinical use. Reprod. Med. Rev. 4, 163–77.
Tilly, J.L., Kowalski, K.I., Schomberg, D.W. & Hsueh, A.J.W. (1992). Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase. Endocrinology 131, 1670–6.
Tisdall, D.J., Watanabe, K., Hudson, N.L., Smith, P. & McNatty, K.P. (1995). FSH receptor gene expression during ovarian follicle development in sheep. J. Endocrinol. 15, 273–81.
Urban, R.J., Garmey, J.C., Shupnik, M.A. & Veldhuis, J.D. (1991). Follicle-stimulating hormone increases concentrations of messenger ribonucleic acid encoding cytochrome P450 cholesterol side-chain cleavage enzyme in primary cultures of porcine granulosa cells. Endocrinology 128, 2000–7.
van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.
van den Hurk, R., Dijkstra, G., Hulshof, S.C.J. & Vos, P.L.A.M. (1994). Micromorphology of antral follicles in cattle after prostaglandin-induced luteolysis, with particular reference to atypical granulosa cells. J. Reprod. Fertil. 100, 137–42.
van Tol, H.T. & Bevers, M.M. (1998). Theca cells and theca-cell conditioned medium inhibit the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 51, 315–21.
van Tol, H.T., van Eijk, M.J., Mummery, C.L., van den Hurk, R. & Bevers, M.M. (1996). Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrane granulosa. Mol. Reprod. Dev. 45, 218–24.
Wang, Y., Rippstein, P.U. & Tsang, B.K. (2003). Role and gonadotrophic regulation of X-linked inhibitor of apoptosis protein expression during rat ovarian follicular development in vitro. Biol. Reprod. 68, 610–9.
Webb, R., Campbell, B., Garverick, H., Gong, J., Gutierrez, C. & Armstrong, D. (1999). Molecular mechanisms regulating follicular recruitment and selection. J. Reprod. Fertil. Suppl. 53, 3348.
Wu, J., Nayudu, P.L., Kiesel, P.S. & Michelmann, H.W. (2000). Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol. Reprod. 63, 320–7.
Xu, Z., Garverick, H.A., Smith, G.W., Smith, M.F., Hamilton, S.A. & Youngquist, R.S. (1995). Expression of follicle-stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biol. Reprod. 53, 951–7.

Keywords

Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles

  • M.V.A. Saraiva (a1), J.J.H. Celestino (a2), V.R. Araújo (a2), R.N. Chaves (a2), A.P. Almeida (a2), I.B. Lima-Verde (a2), A.B.G. Duarte (a2), G.M. Silva (a2), F.S. Martins (a2), J.B. Bruno (a2), M.H.T. Matos (a2), C.C. Campello (a2), J.R.V. Silva (a3) and J.R. Figueiredo (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed