Skip to main content Accessibility help

Expression of Fas–Fas ligand system associated with atresia in murine ovary

  • Ji Ping Xu (a1), Xiang Li (a1), Etsuko Mori (a1), Eimei Sato (a1), Shigeru Saito (a1), Mao Wu Guo (a1) and Tsuneatsu Mori (a1)...


We detected that Fas receptor (Fas) was expressed at transcriptional levels in oocytes/eggs and some granulosa cells of murine ovary, whereas, Fas ligand (FasL) was found to be strongly expressed in granulosa cells by means of in situ hybridisation. These results were supported by an indirect immunofluorescence (IIF) test with anti-Fas monoclonal antibody (mAb)/FasL Ab. The lysates from granulosa cells were precipitated by anti-FasL Ab, exhibiting a specific band at 40 kDa. When zona pellucida (ZP)-free eggs were incubated with granulosa cells in vitro, apoptosis (DNA fragmentation) was induced in the eggs, as detected by the terminal deoxynucleotide transferase mediated dUTP-nick end labelling (TUNEL) method. To examine whether FasL-bearing cells can induce apoptosis in eggs expressing Fas through molecular interaction between FasL and Fas, we employed a baculovirus expression system to generate FasL on the surface of Spodoptera frugiperda (Sf9) cells. The co-incubation of eggs with Autographa californica nuclear polyhedrosis virus (AcNPV) and FasL transfected Sf9 (Sf9–FasL) cells in vitro was performed and resulted in the induction of apoptosis in eggs as detected by the TUNEL method. Apoptosis was absent in eggs co-incubated with AcNPV-1393 transfected Sf9 (Sf9−1393) cells. Thus, ovarian atresia was suggested to be induced by molecular interaction between FasL on granulosa cells and Fas on oocytes/eggs during oogenesis.


Corresponding author

T. Mori, Department of Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 shirokanedai, Minato-ku, Tokyo 108, Japan. Telephone: +81-3-5449-5261. Fax: +81-3-5449-5402, e-mail:


Hide All
Dhein, J., Daniel, P.T., Trauth, B.C., Oehm, A.,Moller, P., & Krammer, P.H.. (1992). Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149, 3166–73.
Enari, M., Talanian, R.V., Wong, W.W., & Nagata, S.. (1996). Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723–26.
Flaws, J.A., Kugu, K., Trbovich, A.M., Desanti, A., Tilly, K.I., Hirshfield, A.N., & Tilly, J.L.. (1995). Interleukin-1β-converting enzyme-related proteases (IRPs) and mammalian cell death: dissociation of IRP-induced oligonucleosomal endonuclease activity from morphological apoptosis in granulosa cells of the ovarian follicle. Endocrinology 136, 5042–53.
French, L.E., Hahne, M., Viard, I., Radlgruber, G., Zanone, R., Becker, K., Muller, C., & Tschopp, J.. (1996). Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell Biol. 133, 335–43.
Greenwald, G.S.. (1989). Temporal and topographic changes in DNA synthesis after induced follicular atresia. Biol. Reprod. 40, 175–81.
Guo, M.W., Mori, E., Xu, J.P., & Mori, T.. (1994). Identification of Fas antigen associated with apoptotic cell death in murine ovary. Biochem. Biophys. Res. Commun. 203, 1438–46.
Guo, M.W., Watanabe, T., Mori, E., & Mori, T.. (1995). Molecular structure and function of CD4 on murine egg plasma membrane. Zygote 3, 6573.
Guo, M.W., Xu, J.P.. Mori, E., Sato, E., Saito, S., & Mori, T.. (1997 a). Expression of Fas ligand in murine ovary. Am. J. Reprod. Immunol. 37, 391–8.
Guo, M.W., Xu, J.P., Mori, E., Sato, E., Saito, S., & Mori, T.. (1997 b). Expression of Fas–Fas ligand system in murine ovary and its role for atresia through apoptosis. J. Reprod. Dev. 43 (Suppl), 93–4.
Hirshfield, A.N.. (1991). Development of follicles in the mammalian ovary. Int. Rev. Cytol. 124, 43101.
Hogan, B., Costantini, F., & Lacy, E.. (1994). Manipulating the Mouse Embryo: A Laboratory Manual, 2nd edn, pp. 325–84. New York: Cold Spring Harbor Laboratory.
Hughes, F.M.J, & Gorospe, W.C.. (1991). Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129, 2415–22.
Itoh, N., & Nagata, S.. (1993). A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem. 268, 10932–7.
Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., & Nagata, S.. (1991). The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–43.
Itoh, N., Tsujimoto, Y., & Nagata, S.. (1993). Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151, 621–7.
Kondo, H., Maruo, T., Peng, X., & Mochizuki, M.. (1996). Immunological evidence for the expression of the Fas antigen in the infant and adult human ovary during follicular regression and atresia. J. Clin. Endocrinol. Metab. 81, 2702–10.
Los, M., Craen, M.V., Penning, L.C., Schenk, H., Westendorp, M., Baeuerle, P.A., Droge, W., Krammer, P.H., Fiers, W., & Schulze-Osthoff, K.. (1995). Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375, 81–3.
Mariani, S.M., Matiba, B., Baumler, C., & Krammer, P.H.. (1995). Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur. J. Immunol. 25, 2303–7.
Mariani, S.M., Matiba, B., Sparna, T., & Krammer, P.H.. (1996). Expression of biologically active mouse and human CD95/APO-1/Fas ligand in the baculovirus system. J. Immunol. Methods 193, 63–70.
Maruo, T.. (1995). Expression of oncogenes, growth factors and their receptors in follicular growth, regression and atresia: their roles in granulosa cell proliferation and differentiation. Acta Obstet. Gynaecol. Jpn. 47, 738–50.
Maxson, W.S., Haney, A.F., & Schomberg, D.W.. (1985). Steroidogenesis in porcine atretic follicles: loss of aromatase activity in isolated granulosa and theca. Biol. Reprod. 33, 495501.
Mori, T., Xu, J.P., Mori, E., Sato, E., Saito, S., & Guo, M.W.. (1997). Expression of Fas–Fas ligand system associated with atresia through apoptosis in murine ovary. Horm. Res. 48 (Suppl. 3), 1119.
Nagata, S., & Golstein, P.. (1995). The Fas death factor. Science 267, 1449–56.
Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., Ioth, N., Suda, T., & Nagata, S.. (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–9.
Owen-Schaub, L.B., Yonehara, S., IIICrump, W.L., & Grimm, E.A.. (1992). DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol. 140, 197205.
Quirk, S.M., Cowan, R.G., Joshi, S.G., & Henrikson, K.P.. (1995). Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol. Reprod. 52, 279–87.
Raff, M.C.. (1992). Social controls on cell survival and cell death. Nature 356, 397400.
Sakamaki, K., Yoshida, H., Nishimura, Y., Nishikawa, S., Manaba, N., & Yonehara, S.. (1997). Involvement of Fas antigen in ovarian follicular atresia and luteolysis. Mol. Reprod. Dev. 47, 1118.
Schulze-Osthoff, K., Walczak, H., Droge, W., & Krammer, P.H.. (1994). Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127, 15–20.
Smith, C.A., Farrah, T., & Goodwin, R.G.. (1994). The TNF-receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–62.
Spanel-Borowski, K.. (1981). Morphological investigations on follicular atresia in canine ovaries. Cell Tissue Res. 214, 155–68.
Suda, T., & Nagata, S.. (1994). Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 179, 873–9.
Suda, T., Takahashi, T., Golstein, P., & Nagata, S.. (1993). Molecular cloning and expression of the Fas ligand, a novel member of the tumour necrosis factor family. Cell 75, 1169–78.
Summer, M.D., & Smith, G.E.. (1987). A Manual of Methods for Baculovirus Vector and Insect Cell Culture Procedures. Texas Agriculture Experiment Station bulletin no. 1555.
Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., & Nagata, S.. (1994). Generalised lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–76.
Takayama, S., Sato, T., Krajewski, S., Kochel, K., Irie, S., Millan, J.A., & Reed, J.C.. (1995). Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80, 279–84.
Tanaka, M., Suda, T., Takahashi, T., & Nagata, S.. (1995). Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–35.
Tartaglia, L.A., Ayres, T.M., Wong, G.H., & Goeddel, D.V.. (1993). A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–53.
Tilly, J.L., Kowaiski, K.I., Johnson, A.L., & Hsueh, A.J.. (1991). Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129, 2799–801.
Tilly, J.L., Tilly, K.I., Kenton, M.L., & Johnson, A.L.. (1995). Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-x long messenger ribonucleic acid levels. Endocrinology 136, 232–41.
Trauth, B.C., Klas, C., Peters, A.M., Matzku, S., Moller, P., Falk, W., Debatin, K.M., & Krammer, P.H.. (1989). Monoclonal antibody-mediated tumour regression by induction of apoptosis. Science 245, 301–5.
Walker, N.I., Harmon, B.V., Gobe, G.C., & Kerr, J.F.R.. (1988). Patterns of cell death. Methods Achiev. Exp. Pathol. 13,1854.
Watanabe-Fukunaga, R., Brannan, C.I., Itoh, N., Yonehara, S., Copeland, N.G., Jenkins, N.A., & Nagata, S.. (1992). The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–79.
Whitten, W.K., & Biggers, J.D.. (1968). Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399401.
Wong, G.H.W., & Goeddel, D.V.. (1994). Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. I. Immunol. 152, 1751–55.
Zeleznik, A.J., Ihrig, L.L., & Bassett, S.G.. (1989). Developmental expression of Ca++/Mg++-dependent endonuclease activity in rat granulosa and luteal cells. Endocrinology. 125, 2218–20.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed