Skip to main content Accessibility help
×
Home

Evidence that acrosin activity is important for the development of fusibility of mammalian spermatozoa with the oolemma: inhibitor studies using the golden hamster

  • Hiroko Takano (a1), R. Yanagimachi (a1) and Umbert A. Urch (a1)

Summary

The sperm plasma membrane over the equatorial segment of the acrosome gains the ability to fuse with the oolemma some time during, or after, the acrosome reaction. Since acrosin is a major component of the acrosome matrix that dissolves during the acrosome reaction, we sought to determine the effect of acrosin inhibitors on the sperm's ability to fuse with the oolemma. Five acrosin inhibitors (soybean trypsin inhibitor (SBTI), leupeptin, benzamidine, N-p-tosyl-1-lysin-chloromethyl ketone (TLCK) and phenylmethylsulphonyl fluoride (PMSF) and one non-acrosin inhibitor (N-p-tosyl-1-phenylalanine chloromethyl ketone (TPCK) were tested at non-toxic levels (below motility-disturbing concentrations). These inhibitors were added at three different times: (1) during the acrosome reaction of spermatozoa, (2) during sperm-oocyte contact and fusion, and (3) soon after sperm-oocyte fusion was completed. TLCK prevented sperm-oocyte fusion by inhibiting the acrosome reaction.PMSF inhibited gamete fusion, without inhibiting the acrosome reaction. SBTI, leupeptin and benzamidine also inhibited gamete fusion, but they had no effect if spermatozoa were allowed to acrosome-react in inhibitor-free medium. TPCK was without any inhibitory effects, suggesting that chymotrypsin-like enzymes are not involved in gamete fusion. Although acrosin inhibitors prevented acrosome-reacted spermatozoa from becoming fusion-competent, acrosin (and trypsin) alone could not make the plasma membrane of acrosome-intact spermatozoa fusion-competent. The data suggest that (1) the plasma membrane of the acrosomal region first undergoes dramatic changes immediately before or during the acrosome reaction and (2) acrosin released from the acrosome during the acrosome reaction further alters biophysical and biochemical characteristics of the plasma membrane over the equatorial segment. Such dual changes make the plasma membrane of this specialised region of the spermatozoon competent to fuse with the oolemma. Acrosin may not be the only acrosomal enzyme to participate in these changes.

Copyright

Corresponding author

R. Yanagimachi, Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu, HI 96822, USA. Fax: (808) 956-5474.

References

Hide All
Ahkong, Q.F., Blow, A.M., Botham, G.M., Launder, J.M.,Quirk, S.J. & Lucy, J.A. (1978). Proteinases and cell fusion. FEBS Lett. 95, 147–52.
Austin, C.R. & Bishop, M.W.H. (1958). Role of rodent acrosome and perforatorium in fertilization. Proc. R. Soc. Lond. B 149, 241–8.
Bavister, B.D.(1989).A consistently successful procedure for in vitro fertilization of golden hamster eggs. Gamete Res. 23, 139–58.
Bedford, J.M., Moore, H.D.M. &Franklin, L.E. (1979).Significance of the equatorial segment of the acrosome of the spermatozoa in eutherian mammals. Exp. Cell Res. 119, 119–26.
Blobel, C.P., Myles, D.G., Primakoff, P. & White, J.M.(1990). Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization com petence. J. Cell Biol. 111, 6978.
Blobel, C.P., Wolfsberg, T.G., Turck, C.W., Myles, D.G., makoff, P. & White, J.M. (1992). A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356 248–52.
Cherr, G.N., Lambert, H., Meizel, S. & Katz, D.F. (1986). In vitro studies of the golden hamster sperm acrosome reaction:completion on the zona pellucida and induction by homologous solubilized zonae pellucidae. Dev. Biol. 114, 119–31.
Cowan, A.E., Myles, D.G. & Koppel, D.E. (1991). Migration of the guinea pig sperm membrane protein PH-20 from one localized surface domain to another does not occur by a simple diffusion-trapping mechanism. Dev. Biol. 144, 189–98.
Diaz-Perez, E. & Meizel, S.(1992). Importance of mammalian sperm metalloprotease activity during the acrosome reaction to subsequent sperm-egg fusion: inhibitor studies with human sperm and zona-free hamster eggs. Mol. Reprod. Dev. 31, 122–30.
Diaz-Perez, E.,Thomas, P. & Meizel, S. (1988).Evidence suggesting a role for sperm metalloprotease activity in penetration of zona-free hamster eggs by human sperm. J. Exp. Zool. 248, 213–21.
Dravland, J.E. & Meizel, S.(1982). The effect of inhibitors of trypsin and phospholipase A2 on the penetration of zona pellucida-free hamster eggs by acrosome-reacted hamster sperm. J. Androl. 3, 388–95.
Draviand, J.E., Llanos, M., Munn, R. & Meizel, S. (1984). Evidence for the involvement of a sperm trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction. J. Exp. Zool. 232, 117–28.
Fleming, A.D.& Yanagimachi, R.(1980). Superovulation and superpregnancy in the golden hamster. Dev. Growth Differ. 22, 103–12.
Fraser, L. (1982). p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. J. Reprod. Fert. 65, 111.
Green, D.P. (1978). The activation of proteolysis in the acrosome reaction of guinea pig sperm. J. Cell Sci. 32, 153–64.
Greenwald, G.S. (1962). Analysis of superovulation in the adult hamster. Endocrinology 71, 378–89.
Hedrick, J.L., Urch, U.A. & Hardy, D.M. (1989). Structure-functional properties of the sperm enzyme acrosin. In: Biocatalysis in Agricultural Biotechnology, ed. Whitaker, J.R. & Sonnet, P.E., pp. 215–29. Washington, DC: American Chemical Society.
Huang, T.T.F., Hardy, D., Yanagimachi, H., Tuschor, C., Tung, K., Wild, G. & Yanagimachi, R. (1985). pH and protease control of acrosomal content stasis and release during the guinea pig sperm acrosome reaction. Biol. Reprod. 32, 451–62.
Huang-Yang, Y.H.H. & Meizel, S. (1975). Purification of rabbit testis proacrosin and studies of its active form. Biol. Reprod. 12, 232–8.
Kopf, G. & Gerton, G.L. (1991). The mammalian sperm acrosome and the acrosome reaction. In: Elements of Mammalian Fertilization, ed.Wassarman, P., pp. 153203. Boca Raton, Florida: CRC Press.
Leibfried, M.L. & Bavister, B.D. (1981). The effects of taurine and hypotaurine on in vitro fertilization in the golden hamster. Gamete Res. 4, 5763.
Liu, W. & Meizel, S. (1979). Further evidence in support of a role of hamster sperm hydrolytic enzymes in the acrosome reaction. J. Exp. Zool. 207, 173–86.
Longo, F. & Yanagimachi, R. (1993). Detection of sperm-egg fusion. In: Methods in Enzymology, ed. Duzgunes, N.New York: Academic Press (in press).
Meizel, S. (1984). The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction. Biol. Rev. 59, 125–57.
Meizel, S. & Mukerji, S.K. (1976). Biochemical studies of proacrosin and acrosin from hamster cauda epididymal spermatozoa. Biol. Reprod. 14, 440–50.
Mrsny, R., Waxman, L. & Meizel, S. (1979). Taurine main tains and stimulates motility of hamster sperm during capacitation in vitro. J. Exp. Zool. 210, 123–8.
Parrish, R.F. & Polakoski, K.L. (1978). Boar alpha-acrosin: purification and characterization of the initial active enzyme resulting from the conversion of boar proacrosin to acrosin. J. Biol. Chem. 253, 8424–32.
Perreault, S.D., Zerkin, B.R., and Rogers, B.J. (1982).Effect of trypsin inhibitors on acrosome reaction of guinea pig spermatozoa. Biol. Reprod. 26, 343351.
Phelps, B.M., Koppel, D.E., Primakoff, P. & Myles, D.G. (1990). Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell Biol. 111, 1839–47.
Richardson, R.T., Nikolajczyk, B.S., Abdullah, L.H., Beaver, J.C. & O'Rand, M.G.(1991). Localization of rabbit sperm acrosin during the acrosome reaction induced by immobilized zona matrix. Biol. Reprod. 45, 20–6.
Talbot, P. &Chacon, R. (1981).Detection of modification in the tail of capacitated guinea pig sperm using lectins. J. Exp. Zool. 216, 435–44.
Tesarik, J., Drahorad, J., Testart, J. & Mendoza, C. (1990).Acrosin activation follows its surface exposure and precedes membrane fusion in human sperm acrosome reaction. Development 110, 391400.
Topfer-Petersen, E., Cedhova, D., Henchen, A., Steinberger, M.M., Fries, A.E. & Zucker, A. (1990).Cell biology of acrosomal proteins. Andrologia 22, 110–21.
Urch, U.A. (1991). Biochemistry and function of acrosin. In: Elements of Mammalian Fertilization, ed. Wassarman, P., 1, pp. 233–48. Boca Raton, Florida: CRC Press.
Wolf, D.P. (1977). Involvement of a trypsin-like activity in sperm penetration into zona-free mouse ova. J. Exp. Zool. 199, 149–56.
Yanagimachi, R. (1970). The movement of golden hamster spermatozoa before and after capacitation. J. Reprod. Pert. 23, 193–6.
Yanagimachi, R. (1978). Calcium requirement for sperm-egg fusion in mammals. Biol. Reprod. 19, 949–58.
Yanagimachi, R. (1981). Mechanisms of fertilization in mammals. In: Fertilization and Embryonic Development, ed. Mastroianni, L. & Biggers, J.D., pp. 81–181. New York: Plenum Press.
Yanagimachi, R.(1982). In vitro sperm capacitation and fertilization of golden hamster eggs in a chemically defined medium. In: In Vitro Fertilization and Embryo Transfer, ed. Hafez, E.S.E. & Semm, K., pp.65–76. Lancaster, MTP Press.
Yanagimachi, R. (1988 a). Mammalian fertilization. In: The Physiology of Reproduction, ed. Knobil, E. & Neill, J.D., pp. 135–85. New York: Raven Press.
Yanagimachi, R. (1988 b). Sperm-egg fusion. In: Current Topics in Membranes and Transport, vol. 32, Membrane Fusion in Fertilization, Cellular Transport and Viral Infection, ed. Duz gunes, N. & Bronner, F., pp. 3–43.New York: Academic Press.
Yanagimachi, R. & Noda, Y.D. (1970 a). Physiological changes in the post-nuclear cap region of mammalian spermatozoa: a necessary preliminary to the membrane fusion between sperm and egg cells. J. Ultrastruct. Res. 31, 486–93.
Yanagimachi, R. & Noda, Y.D.(1970 b). Electron microscope studies of sperm incorporation into hamster egg. Am. J. Anat. 126, 429–62.
Zaneveld, L.J.D. & De Jonge, C.J. (1991). Mammalian sperm acrosomal enzymes and the acrosome reaction. In: A Com parative Overview of Mammalian Fertilization, ed. Dunbar, B.S. & O'Rand, M.G., pp. 63–79. New York: Raven Press.
Zaneveld, L.J.D., Polakoski, K.L., Robertson, R.T. & Williams, W.L. (1975). Trypsin inhibitors and fertilization. In: Proteinose and Biological Control, ed. Fritz, H. & Tschesche, H., pp. 236–42. New York: Walter de Gruyter.

Keywords

Related content

Powered by UNSILO

Evidence that acrosin activity is important for the development of fusibility of mammalian spermatozoa with the oolemma: inhibitor studies using the golden hamster

  • Hiroko Takano (a1), R. Yanagimachi (a1) and Umbert A. Urch (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.