Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T16:49:05.869Z Has data issue: false hasContentIssue false

The effect of pentoxifylline and calcium ionophore treatment on sperm cell biology in oligoasthenoteratozoospermia samples

Published online by Cambridge University Press:  14 December 2022

Maryam Mahaldashtian
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Mohammad Ali Khalili*
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Mahboubeh Vatanparast
Affiliation:
Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
Fatemeh Anbari
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Ali Nabi
Affiliation:
Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Esmat Mangoli
Affiliation:
Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
*
Author for correspondence: Mohammad Ali Khalili. Professor of Embryology, Yazd Reproductive Sciences Institute, Iran. Tel: +983518247085. Fax: +983518247087. E-mail: Khalili59@hotmail.com

Summary

The objective of this study was to assess the effects of pentoxifylline (PTX) and Ca2+ ionophore (CI) A12387 treatment on some biological characteristics of sperm cells in oligoasthenoteratozoospermia (OAT) patients. After processing, each sample was divided into four groups: 1, control; 2, exposed to 3.6 mM PTX; 3, exposed to 5 μm calcium ionophore (CI); and 4, exposed to both PTX and CI; 30 min at 37°C. Sperm motility was measured before and after preparation. Acrosome reaction (AR), status of sperm vacuoles, mitochondrial membrane potential (MMP) and DNA fragmentation were assessed using PSA-FITC staining, motile sperm organelle morphology examination (MSOME), JC-1 staining and sperm chromatin dispersion (CSD) test, respectively. Treatment with PTX and CI led to increased and decreased sperm motility, respectively (P < 0.05). Furthermore, vacuole status and rates of sperm DNA fragmentation were not significantly different among groups (P > 0.05). Moreover, the data showed that the rates of AR and disrupted MMP were significantly different between groups (P < 0.05). In conclusion, in vitro application of PTX not only did not have any adverse effects on sperm cell biology characteristics, but also can rectify the harmful effect of CI.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, A., Lourenço, B., Marques, M. and Ramalho-Santos, J. (2013). Mitochondria functionality and sperm quality. Reproduction, 146(5), R163R174. doi: 10.1530/REP-13-0178 CrossRefGoogle ScholarPubMed
Anbari, F., Khalili, M. A., Agha-Rahimi, A., Maleki, B., Nabi, A. and Esfandiari, N. (2020). Does sperm DNA fragmentation have negative impact on embryo morphology and morphokinetics in IVF programme? Andrologia, 52(11), e13798. doi: 10.1111/and.13798 CrossRefGoogle ScholarPubMed
Baker, M. A., Naumovski, N., Hetherington, L., Weinberg, A., Velkov, T. and Aitken, R. J. (2013). Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics, 13(1), 6174. doi: 10.1002/pmic.201200350 CrossRefGoogle ScholarPubMed
Barbagallo, F., La Vignera, S., Cannarella, R., Aversa, A., Calogero, A. E. and Condorelli, R. A. (2020). Evaluation of sperm mitochondrial function: A key organelle for sperm motility. Journal of Clinical Medicine, 9(2). doi: 10.3390/jcm9020363 CrossRefGoogle ScholarPubMed
Boitrelle, F., Ferfouri, F., Petit, J. M., Segretain, D., Tourain, C., Bergere, M., Bailly, M., Vialard, F., Albert, M. and Selva, J. (2011). Large human sperm vacuoles observed in motile spermatozoa under high magnification: Nuclear thumbprints linked to failure of chromatin condensation. Human Reproduction, 26(7), 16501658. doi: 10.1093/humrep/der129 CrossRefGoogle ScholarPubMed
Chehab, M., Madala, A. and Trussell, J. C. (2015). On-label and off-label drugs used in the treatment of male infertility. Fertility and Sterility, 103(3), 595604. doi: 10.1016/j.fertnstert.2014.12.122 CrossRefGoogle ScholarPubMed
Engel, K. M., Springsguth, C. H. and Grunewald, S. (2018). What happens to the unsuccessful spermatozoa? Andrology, 6(2), 335344. doi: 10.1111/andr.12467 CrossRefGoogle Scholar
Esteves, S. C., Spaine, D. M. and Cedenho, A. P. (2007). Effects of pentoxifylline treatment before freezing on motility, viability and acrosome status of poor quality human spermatozoa cryopreserved by the liquid nitrogen vapor method. Brazilian Journal of Medical and Biological Research, 40(7), 985992. doi: 10.1590/s0100-879x2006005000118 CrossRefGoogle ScholarPubMed
Fallahzadeh, A. R., Rezaei, Z., Rahimi, H. R., Barmak, M. J., Sadeghi, H., Mehrabi, S., Rabani, S. M., Kashani, I. R., Barati, V. and Mahmoudi, R. (2017). Evaluation of the effect of pentoxifylline on cisplatin-induced testicular toxicity in rats. Toxicological Research, 33(3), 255263. doi: 10.5487/TR.2017.33.3.255 CrossRefGoogle ScholarPubMed
Gianaroli, L., Magli, M. C., Ferraretti, A. P., Crippa, A., Lappi, M., Capitani, S. and Baccetti, B. (2010). Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertility and Sterility, 93(3), 807813. doi: 10.1016/j.fertnstert.2008.10.024 CrossRefGoogle ScholarPubMed
Isachenko, E., Isachenko, V., Weiss, J. M., Kreienberg, R., Katkov, I. I., Schulz, M., Lulat, A. G., Risopatrón, M. J. and Sánchez, R. (2008). Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction, 136(2), 167173. doi: 10.1530/REP-07-0463 CrossRefGoogle ScholarPubMed
Kacem, O., Sifer, C., Barraud-Lange, V., Ducot, B., De Ziegler, D., Poirot, C. and Wolf, J. (2010). Sperm nuclear vacuoles, as assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reproductive Biomedicine Online, 20(1), 132137. doi: 10.1016/j.rbmo.2009.10.014 CrossRefGoogle ScholarPubMed
Kowalczyk, A. (2022). The role of the natural antioxidant mechanism in sperm cells. Reproductive Sciences, 29(5), 13871394. doi: 10.1007/s43032-021-00795-w CrossRefGoogle ScholarPubMed
Leahy, T. and Gadella, B. M. (2011). Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction, 142(6), 759778. doi: 10.1530/REP-11-0310 CrossRefGoogle ScholarPubMed
Mahaldashtian, M., Khalili, M. A., Nottola, S. A., Woodward, B., Macchiarelli, G. and Miglietta, S. (2021). Does in vitro application of pentoxifylline have beneficial effects in assisted male reproduction? Andrologia, 53(1), e13722. doi: 10.1111/and.13722 CrossRefGoogle ScholarPubMed
Mahaldashtian, M., Khalili, M. A., Mangoli, E., Zavereh, S. and Anbari, F. (2022). Pentoxifylline treatment had no detrimental effect on sperm DNA integrity and clinical characteristics in cases with non-obstructive azoospermia. Zygote, 16. doi: 10.1017/S0967199422000247 Google ScholarPubMed
Mangoli, E., Khalili, M. A., Talebi, A. R., Kalantar, S. M., Montazeri, F., Agharahimi, A. and Woodward, B. J. (2020). Association between early embryo morphokinetics plus transcript levels of sperm apoptotic genes and clinical outcomes in IMSI and ICSI cycles of male factor patients. Journal of Assisted Reproduction and Genetics, 37(10), 25552567. doi: 10.1007/s10815-020-01910-7 CrossRefGoogle ScholarPubMed
Nabi, A., Khalili, M. A., Fesahat, F., Talebi, A. and Ghasemi-Esmailabad, S. (2017). Pentoxifylline increase sperm motility in devitrified spermatozoa from asthenozoospermic patient without damage chromatin and DNA integrity. Cryobiology, 76, 5964. doi: 10.1016/j.cryobiol.2017.04.008 CrossRefGoogle ScholarPubMed
Nazari, M., Daghigh-Kia, H., Mehdipour, M. and Najafi, A. (2022). Comparison of the performance of targeted mitochondrial antioxidant mitoquinone and non-targeted antioxidant pentoxifylline in improving rooster sperm parameters during freezing and thawing. Poultry Science, 101(9), 102035. doi: 10.1016/j.psj.2022.102035 CrossRefGoogle ScholarPubMed
Neyer, A., Vanderzwalmen, P., Bach, M., Stecher, A., Spitzer, D. and Zech, N. (2013). Sperm head vacuoles are not affected by in-vitro conditions, as analysed by a system of sperm-microcapture channels. Reproductive Biomedicine Online, 26(4), 368377. doi: 10.1016/j.rbmo.2012.11.021 CrossRefGoogle Scholar
Rezaie, M. J., Allahveisi, A., Raoofi, A., Rezaei, M., Nikkhoo, B. and Mousavi Khaneghah, A. (2021). In vitro effects of pentoxifylline and coenzyme Q10 on the sperm of oligoasthenoteratozoospermia patients. Human Fertility, 110. doi: 10.1080/14647273.2021.2017024. Epub ahead of print.CrossRefGoogle ScholarPubMed
Saber, M., Shafey, A., Alabedeen, M., Massoud, A. and Elwan, M. (2022). Comparison between platelet activation factor and pentoxifylline on sperm in asthenozoospermia cases. Egyptian Journal of Experimental Biology (Zoology), 18(1), 5353. doi: 10.5455/egysebz.20220313032140 CrossRefGoogle Scholar
Salian, S. R., Nayak, G., Kumari, S., Patel, S., Gowda, S., Shenoy, Y., Sugunan, S., G K, R., Managuli, R. S., Mutalik, S., Dahiya, V., Pal, S., Adiga, S. K. and Kalthur, G. (2019). Supplementation of biotin to sperm preparation medium enhances fertilizing ability of spermatozoa and improves preimplantation embryo development. Journal of Assisted Reproduction and Genetics, 36(2), 255266. doi: 10.1007/s10815-018-1323-1 CrossRefGoogle ScholarPubMed
Tasdemir, M., Tasdemir, I., Kodama, H. and Tanaka, T. (1993). Pentoxifylline-enhanced acrosome reaction correlates with fertilization in vitro. Human Reproduction, 8(12), 21022107. doi: 10.1093/oxfordjournals.humrep.a137990 CrossRefGoogle ScholarPubMed
Tsirulnikov, E., Huta, Y. and Breitbart, H. J. T. (2019). PKA and PI3K activities during capacitation protect sperm from undergoing spontaneous acrosome reaction. Theriogenology, 128, 5461. doi: 10.1016/j.theriogenology.2019.01.036 CrossRefGoogle ScholarPubMed
Wang, X., Sharma, R. K., Gupta, A., George, V., Thomas, A. J., Falcone, T. and Agarwal, A. (2003). Alterations in mitochondria membrane potential and oxidative stress in infertile men: A prospective observational study. Fertility and Sterility, 80, Suppl. 2, 844850. doi: 10.1016/s0015-0282(03)00983-x CrossRefGoogle ScholarPubMed
World Health Organization. (2010). WHO laboratory manual for the examination and processing of human semen. World Health Organization.Google Scholar
Yeste, M., Recuero, S., Maside, C., Salas-Huetos, A., Bonet, S. and Pinart, E. (2021). Blocking NHE channels reduces the ability of in vitro capacitated mammalian sperm to respond to progesterone stimulus. International Journal of Molecular Sciences, 22(23), 12646. doi: 10.3390/ijms222312646 CrossRefGoogle ScholarPubMed
Zhang, G., Yang, W., Zou, P., Jiang, F., Zeng, Y., Chen, Q., Sun, L., Yang, H., Zhou, N., Wang, X., Liu, J., Cao, J., Zhou, Z. and Ao, L. (2019). Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Human Reproduction, 34(1), 311. doi: 10.1093/humrep/dey335 CrossRefGoogle ScholarPubMed