Skip to main content Accessibility help
×
Home

The effect of kinetic heat shock on bovine oocyte maturation and subsequent gene expression of targeted genes

  • Krishna C. Pavani (a1) (a2), António Rocha (a3), Erica Baron (a4), Joana Lourenço (a1), Marwa Faheem (a5) and Fernando Moreira da Silva (a6)...

Summary

The exposure of oocytes to heat stress during the maturation process results in harmful effects to their internal organelles, low fertilization capability and higher embryonic losses. In the present experiment the effect of heat shock (HS) during the maturation process was assessed. In Assay 1, oocytes from winter (December–March; n = 100) and summer (June–September; n = 100) months were collected and matured to analyse their HS tolerance. Total RNA was extracted from matured oocytes and cDNA synthesis was performed, followed by qPCR for selected genes (Cx43, CDH1, DNMT1, HSPA14), compared with two reference genes (GAPDH and SDHA). In Assay 2, oocytes collected during the winter were subjected to kinetic HS by stressing them at 39.5°C for 6, 12, 18 or 24 h and were afterwards matured at control temperature (38.5°C), and subsequently subjected to the previously described gene analysis procedure. Results of Assay 1 show that summer-collected oocytes exhibited lower maturation rate than winter-collected oocytes, which may be due to the down-regulation of the HSPA 14 gene. Assay 2 showed that 6 h of HS had no effect on gene regulation. CDH1 and DNMT1 up-regulation was observed starting at 12 h, which may represent the effect of heat shock on oocyte development.

Copyright

Corresponding author

All correspondence to: Fernando Moreira da Silva. Departamento de Ciências Agrárias, Secção Reprodução, Campus de Angra do Heroísmo, Universidade dos Açores, Rua Capitão João D'Avila, 9700-042 Angra do Heroísmo, Portugal, Tel.: +351 295 402200, Fax: +351 295 402209, Email: joaquim.fm.silva@uac.pt

References

Hide All
Arechiga, C.F., Ealy, A.D. & Hansen, P.J. (1995). Evidence that glutathione is involved in thermotolerance of preimplantation murine embryos. Biol. Reprod. 52, 1296–301.
Badinga, L., Collier, R.J., Thatcher, W.W. & Wilcox, C.J. (1985). Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment. J. Dairy Sci. 68, 7885.
Cirio, M.C., Ratnam, S. & Ding, F. (2008). Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev. Biol. 8, 922.
Craig, E.A. & Gross, C.A. (1991). Is hsp70 the cellular thermometer? Trend. Biochem. Sci. 16,135–40.
Denomme, M.M. & Mann, M.R. (2012). Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144, 393409.
Edwards, J.L. & Hansen, P.J. (1997). Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol. Reprod. Dev. 46, 138–45.
Eguren, M., Porlan, E., Manchado, E., García-Higuera, I., Cañamero, M., Fariñas, I. & Malumbres, M. (2013). The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat. Commun. 4, 2880.
Faheem, M.S., Baron, E., Carvalhais, I., Chaveiro, A., Pavani, K. & Moreira da Silva, F. (2014). The effect of vitrification of immature bovine oocytes to the subsequent in vitro development and gene expression. Zygote 26, 110.
Gallicano, G.I. (2001). Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front. Biosci. 6, 1089–108.
Gendelman, M., Aroyo, A., Yavin, S. & Roth, Z. (2010). Seasonal effects on gene expression, cleavage timing, developmental competence of bovine preimplantation embryos. Reproduction 140, 7382.
Georgopoulos, C. & Welch, W.J. (1993). Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell. Biol. 9, 601–34.
Golding, M.C. & Westhusin, M.E. (2003). Analysis of DNA (cytosine 5). methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene. Expr. Patterns. 3, 551–8.
Hansen, P.J. (2009). Effects of heat stress on mammalian reproduction. Philos. Trans. Roy. Soc. B. 364, 3341–50.
Hirasawa, R., Chiba, H. & Kaneda, M. (2008). Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes. Dev. 22, 1607–16.
Kang, P.J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A. & Pfanner, N. (1990). Requirement for Hsp70 in the mitochondrial matrix for translocation and folding of precursor protein. Nature 348, 137–43.
Kurihara, Y., Kawamura, Y., Uchijima, Y., Amamo, T., Kobayashi, H., Asano, T., & Kurihara, H. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev. Biol. 313, 335–46.
Palii, S.S., Van Emburgh, B.O., Sankpal, U.T., Brown, K.D. & Robertson, K.D. (2008). DNA methylation inhibitor 5-Aza-2´-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell. Biol. 28, 752–71.
Pavani, K., Carvalhais, I., Faheem, M., Chaveiro, A., Reis, F.V. & Moreira da Silva, F. (2015b). Reproductive performance of Holstein dairy cows grazing in dry-summer subtropical climatic conditions: Effect of heat stress and heat shock on meiotic competence and in vitro fertilization. Asian Australas. J. Anim. Sci. 28, 334–42.
Pavani, K.C., Baron, E.E., Faheem, M., Chaveiro, A. & Moreira da Silva, F. (2015a). Optimization of total RNA extraction from bovine oocytes and embryos for gene expression studies and effects of cryoprotectants on total RNA extraction. Cytology and Genetics 49, 2339.
Pavani, K.C., Baron, E., Correia, P., Lourenço, J., Bettencourt, B.F., Sousa, M. & Moreira da Silva, F. (2016). Gene expression, oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock. Zygote 28,112.
Payton, R.R., Romar, R., Coy, P., Saxton, A.M., Lawrence, J.L. & Edwards, J.L. (2004). Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro . Biol. Reprod. 71, 1303–8.
Pfeiffer, M.J., Slatkowski, M., Paudel, Y., Balbach, S.T., Baeumer, N., Crosetto, N., Drexler, H.C., Fuellen, G. & Boiani, M. (2011). Proteomic analysis of mouse oocytes reveals 28 candidate factors of the “Reprogrammome”. J. Proteome. Res. 10, 2140–53.
Putney, D.J, Mullins, S., Thatcher, W.W., Drost, M. & Gross, T.S. (1989). Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between the onset of estrus and insemination. Anim. Reprod. Sci. 19, 3751.
Rivera, R.M., Kelley, K.L., Erdos, G.W. & Hansen, P.J. (2004). Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos. Biol. Reprod. 70, 1852–62.
Roth, Z., Inbar, G. & Arav, A. (2008). Comparison of oocyte developmental competence and follicular steroid content of nulliparous heifers and cows at different stages of lactation. Theriogenology 69, 932–9.
Russell, D.L. & Robker, R.L. (2007). Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum. Reprod. Update. 13, 289312.
Ryan, D.P., Blakewood, E.G., Lynn, J.W., Munyakazi, L. & Godke, R.A. (1992). Effect of heat-stress in bovine embryo development in vitro . J. Anim. Sci. 70, 3490–7.
Shin, M.R. & Kim, N.H. (2003). Maternal gamma (gamma)-tubulin is involved in microtubule reorganization during bovine fertilization and parthenogenesis. Mol. Reprod. Dev. 64, 438–45.
Sudo, T., Ota, Y., Kotani, S., Nakao, M., Takami, Y., Takeda, S. & Saya, H. (2001). Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J. 20, 6499–508.
Tseng, J.K., Chen, C.H., Chou, P.C., Yeh, S.P. & Ju, J.C. (2004). Influences of follicular size on parthenogenetic activation and in vitro heat shock on the cytoskeleton in cattle oocytes. Reprod. Domest. Anim. 39, 146–53.
Zhang, B., Peñagaricano, F., Driver, A., Chen, H. & Khatib, H. (2011). Differential expression of heat shock protein genes and their splice variants in bovine preimplantation embryos. J. Dairy Sci. 94, 4174–82.

Keywords

The effect of kinetic heat shock on bovine oocyte maturation and subsequent gene expression of targeted genes

  • Krishna C. Pavani (a1) (a2), António Rocha (a3), Erica Baron (a4), Joana Lourenço (a1), Marwa Faheem (a5) and Fernando Moreira da Silva (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed