Skip to main content Accessibility help
×
Home

Developmental competence of porcine oocytes after in vitro maturation and in vitro culture under different oxygen concentrations

  • Jung-Taek Kang (a1), Mohammad Atikuzzaman (a1), Dae-Kee Kwon (a1), Sol-Ji Park (a1), Su-Jin Kim (a1), Joon-Ho Moon (a1), Ok-Jae Koo (a1), Goo Jang (a1) and Byeong-Chun Lee (a2)...

Summary

In this study, we investigated the effect of two oxygen concentrations (5 and 20%) during in vitro maturation (IVM) and during in vitro culture (IVC) on porcine embryo development and analysed differences in gene expression between cumulus–oocyte complexes matured under 5 or 20% oxygen and the resulting blastocysts cultured under 5% or 20% oxygen following parthenogenetic activation. There was no significant difference in oocyte maturation rate. However, the numbers of resulting blastocysts were significantly increased in the 5% IVC group compared with the 20% IVC group. Moreover, the M20C5 treatment group (23.01%) supported greater blastocyst development compared with the M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. However, total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each treatment altered the expression of genes in different patterns. GLUT1, G6PD and LDHA were up-regulated in cumulus cells that had been matured in low oxygen, suggesting a higher glucose uptake and an increase in anaerobic glycolysis, whereas cyclin B1 (CCNB) and MnSOD (Mn-superoxide dismutase) were upregulated in cumulus cells that had been matured in high oxygen, which suggests a higher activity of mitosis-promoting factor and antioxidant response. In spite of these differential effects on cumulus cells, oocytes could mature normally regardless of different oxygen concentrations. Therefore, it can be concluded that high oxygen concentration during in vitro maturation and low oxygen during in vitro culture may alter the expression of multiple genes related to oocyte competence and significantly improves embryo development (p < 0.05) but not blastocyst quality.

Copyright

Corresponding author

All correspondence to: Byeong-Chun Lee. Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151–742, Korea. Tel: +822 880 1269. Fax: +822 873 1269. e-mail: bclee@snu.ac.kr

References

Hide All
Agung, B., Piao, Y., Fuchimoto, D., Senbon, S., Onishi, A., Otoi, T. & Nagai, T. (2010). Effects of oxygen tension and follicle cells on maturation and fertilization of porcine oocytes during in vitro culture in follicular fluid. Theriogenology 73, 893–9.
Bauer, B.K., Isom, S.C., Spate, L.D., Whitworth, K.M., Spollen, W.G., Blake, S.M., Springer, G.K., Murphy, C.N. & Prather, R.S. (2010). Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83, 791–8.
Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91148.
Dai, Y., Vaught, T.D., Boone, J., Chen, S.H., Phelps, C.J., Ball, S., Monahan, J.A., Jobst, P.M., McCreath, K.J., Lamborn, A.E., Cowell-Lucero, J.L., Wells, K.D., Colman, A., Polejaeva, I.A. & Ayares, D.L. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–5.
de Castro e Paula, L.A. & Hansen, P.J. (2007). Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology 68, 763–70.
Fischer, B. & Bavister, B.D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–9.
Gil, M.A., Cuello, C., Parrilla, I., Vazquez, J.M., Roca, J. & Martinez, E.A. (2010). Advances in swine in vitro embryo production technologies. Reprod. Domest. Anim. 45 Suppl 2, 40–8.
Hashimoto, S., Minami, N., Takakura, R., Yamada, M., Imai, H. & Kashima, N. (2000). Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol. Reprod. Dev. 57, 353–60.
Hsieh, C.H., Tang, P.C., Chang, W.H., Weng, Y.C., Sha, S.W., Tseng, J.K., Chang, L.H. & Ju, J.C. (2006). The kinase inhibitor indirubin-3′-oxime prevents germinal vesicle breakdown and reduces parthenogenetic development of pig oocytes. Theriogenology 65, 744–56.
Iwamoto, M., Onishi, A., Fuchimoto, D., Somfai, T., Takeda, K., Tagami, T., Hanada, H., Noguchi, J., Kaneko, H., Nagai, T. & Kikuchi, K. (2005). Low oxygen tension during in vitro maturation of porcine follicular oocytes improves parthenogenetic activation and subsequent development to the blastocyst stage. Theriogenology 63, 1277–89.
Jiang, L., Lai, L., Samuel, M., Prather, R.S., Yang, X. & Tian, X.C. (2008). Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Mol. Reprod. Dev. 75, 265–73.
Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T. & Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–41.
Knudsen, J.F., Litkowski, L.J., Wilson, T.L., Guthrie, H.D. & Batta, S.K. (1978). Concentrations of hydrogen ions, oxygen, carbon dioxide and bicarbonate in porcine follicular fluid. J. Endocrinol. 79, 249–50.
Koo, O.J., Park, H.J., Kwon, D.K., Kang, J.T., Jang, G. & Lee, B.C. (2009). Effect of recipient breed on delivery rate of cloned miniature pig. Zygote 17, 203–7.
Kuroda, T., Naito, K., Sugiura, K., Yamashita, M., Takakura, I. & Tojo, H. (2004). Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antisense RNA injection. Biol. Reprod. 70, 154–9.
Lim, H., Paria, B. C., Das, S.K., Dinchuk, J.E., Langenbach, R., Trzaskos, J.M. & Dey, S.K. (1997). Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91, 197208.
McKenzie, L.J., Pangas, S.A., Carson, S.A., Kovanci, E., Cisneros, P., Buster, J.E., Amato, P. & Matzuk, M. M. (2004). Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–74.
Park, J.I., Hong, J.Y., Yong, H.Y., Hwang, W.S., Lim, J.M. & Lee, E.S. (2005). High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim. Reprod. Sci. 87, 133–41.
Petters, R.M., Johnson, B.H., Reed, M.L. & Archibong, A.E. (1990). Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil. 89, 269–75.
Pinyopummintr, T. & Bavister, B.D. (1995). Optimum gas atmosphere for in vitro maturation and in vitro fertilization of bovine oocytes. Theriogenology 44, 471–7.
Preis, K.A., SeidelG.E., Jr. G.E., Jr. & Gardner, D.K. (2007). Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation. Mol. Reprod. Dev. 74, 893903.
Ross, J.W., Ashworth, M.D., White, F.J., Johnson, G.A., Ayoubi, P.J., DeSilva, U., Whitworth, K.M., Prather, R.S. & Geisert, R.D. (2007). Premature estrogen exposure alters endometrial gene expression to disrupt pregnancy in the pig. Endocrinology 148, 4761–73.
Sugiura, K., Naito, K., Endo, T. & Tojo, H. (2006). Study of germinal vesicle requirement for the normal kinetics of maturation/M-phase-promoting factor activity during porcine oocyte maturation. Biol. Reprod. 74, 593600.
Takahashi, Y. & Kanagawa, H. (1998). Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. J. Vet. Med. Sci. 60, 365–7.
Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. (2002). Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–24.
Tatemoto, H., Sakurai, N. & Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during In vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–10.
Tucker, A., Belcher, C., Moloo, B., Bell, J., Mazzulli, T., Humar, A., Hughes, A., McArdle, P. & Talbot, A. (2002). The production of transgenic pigs for potential use in clinical xenotransplantation: baseline clinical pathology and organ size studies. Xenotransplantation 9, 203–8.
Wang, Z.G., Wang, W., Yu, S.D. & Xu, Z.R. (2008). Effects of different activation protocols on preimplantation development, apoptosis and ploidy of bovine parthenogenetic embryos. Anim. Reprod. Sci. 105, 292301.
Wongsrikeao, P., Kaneshige, Y., Ooki, R., Taniguchi, M., Agung, B., Nii, M. & Otoi, T. (2005). Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Domest. Anim. 40, 166–70.
WrightR.W., Jr. R.W., Jr. (1977). Successful culture in vitro of swine embryos to the blastocyst stage. J. Anim. Sci. 44, 854–8.
Yamashita, Y., Kawashima, I., Gunji, Y., Hishinuma, M. & Shimada, M. (2010). Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EGF-like factor, in cumulus cells, which enhances the EGF receptor signaling pathway during in vitro maturation of porcine COCs. J. Reprod. Dev. 56, 315–23.
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. & Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–9.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed