Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T17:25:52.179Z Has data issue: false hasContentIssue false

Ameliorative effect of Stevia rebaudiana Bertoni on sperm parameters, in vitro fertilization, and early embryo development in a streptozotocin-induced mouse model of diabetes

Published online by Cambridge University Press:  07 July 2023

Mahdad Abdi
Affiliation:
Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
Fathemeh Alizadeh
Affiliation:
Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
Erfan Daneshi*
Affiliation:
Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
Morteza Abouzaripour
Affiliation:
Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
Fardin Fathi
Affiliation:
Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
Kaveh Rahimi
Affiliation:
Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
*
Corresponding author: Erfan Daneshi; Email: erfan.daneshi@yahoo.com

Summary

Diabetes mellitus (DM) is a common metabolic disease characterized by high blood sugar levels. It is well known that men with diabetes frequently experience reproductive disorders and sexual dysfunction. In fact, sperm quality has a significant effect on fertilization success and embryo development. The current study aimed to investigate the effect of Stevia rebaudiana hydroalcoholic extract on serum testosterone levels, sperm parameters, in vitro fertilization (IVF) success, and in vitro embryonic developmental potential to reach the blastocyst stage in a streptozotocin (STZ)-induced mouse model of diabetes. In this research, 30 male mice were distributed randomly into control, diabetic (streptozotocin 150 mg/kg) and diabetic + Stevia (400 mg/kg) groups. The results revealed a decrease in body and testis weight and elevated blood fasting blood sugar (FBS) levels in the diabetic group, compared with the control. However, Stevia treatment significantly increased body and testis weight, while serum FBS levels were decreased compared with the diabetic group. In addition, Stevia significantly increased blood testosterone levels compared with the diabetic group. Moreover, sperm parameters were improved considerably by Stevia treatment compared with the diabetic group. Furthermore, Stevia administration significantly promoted IVF success rate and in vitro development of fertilized oocytes compared with the diabetic group. In summary, our data indicated that Stevia enhanced sperm parameters, IVF success, and in vitro embryonic developmental competency in diabetic mice, probably because of its antioxidant effects. Therefore, Stevia could ameliorate sperm parameters that, in turn, increase fertilization outcomes in experimental-induced diabetes.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, M. B., Dehghan, S. F., Balochkhaneh, F. A., Moghadam, M. A. and Mohammadi, H. (2021). Comparison of mice’ sperm parameters exposed to some hazardous physical agents. Environmental Analysis, Health and Toxicology, 36(3), e2021013. doi: 10.5620/eaht.2021013 CrossRefGoogle ScholarPubMed
Ahmad, U. and Ahmad, R. S. (2018). Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in streptozotocin-induced diabetes in albino rats. BMC Complementary and Alternative Medicine, 18(1), 179. doi: 10.1186/s12906-018-2245-2 CrossRefGoogle ScholarPubMed
Ahn, S. W., Gang, G. T., Kim, Y. D., Ahn, R. S., Harris, R. A., Lee, C. H. and Choi, H. S. (2013). Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. Journal of Biological Chemistry, 288(22), 1593715946. doi: 10.1074/jbc.M113.451773 CrossRefGoogle ScholarPubMed
Al Hayek, A. A., Khader, Y. S., Jafal, S., Khawaja, N., Robert, A. A. and Ajlouni, K. (2013). Prevalence of low testosterone levels in men with type 2 diabetes mellitus: A cross-sectional study. Journal of Family and Community Medicine, 20(3), 179186. doi: 10.4103/2230-8229.122006 CrossRefGoogle ScholarPubMed
Amaral, S., Oliveira, P. J. and Ramalho-Santos, J. (2008). Diabetes and the impairment of reproductive function: Possible role of mitochondria and reactive oxygen species. Current Diabetes Reviews, 4(1), 4654. doi: 10.2174/157339908783502398 Google ScholarPubMed
Assaei, R., Mokarram, P., Dastghaib, S., Darbandi, S., Darbandi, M., Zal, F., Akmali, M. and Ranjbar Omrani, G. H. R. (2016). Hypoglycemic effect of aquatic extract of Stevia in pancreas of diabetic rats: PPARγ-dependent regulation or antioxidant potential. Avicenna Journal of Medical Biotechnology, 8(2), 6574.Google ScholarPubMed
Ballester, J., Muñoz, M. C., Domínguez, J., Rigau, T., Guinovart, J. J. and Rodríguez-Gil, J. E. (2004). Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. Journal of Andrology, 25(5), 706719. doi: 10.1002/j.1939-4640.2004.tb02845.x CrossRefGoogle ScholarPubMed
Chan, O., Chan, S., Inouye, K., Vranic, M. and Matthews, S. G. (2001). Molecular regulation of the hypothalamo-pituitary-adrenal axis in streptozotocin-induced diabetes: Effects of insulin treatment. Endocrinology, 142(11), 48724879. doi: 10.1210/endo.142.11.8474 CrossRefGoogle ScholarPubMed
Condorelli, R. A., La Vignera, S., Mongioì, L. M., Alamo, A. and Calogero, A. E. (2018). Diabetes mellitus and infertility: Different pathophysiological effects in type 1 and type 2 on sperm function. Frontiers in Endocrinology, 9, 268. doi: 10.3389/fendo.2018.00268 CrossRefGoogle ScholarPubMed
Danis, R. B. and Samplaski, M. K. (2019). Sperm morphology: History, challenges, and impact on natural and assisted fertility. Current Urology Reports, 20(8), 43. doi: 10.1007/s11934-019-0911-7 CrossRefGoogle ScholarPubMed
Dastghaib, S., Koohpeyma, F., Khazayel, S., Gholizadeh, F., Pour, S. M., Mokaram, P. and Noorafshan, A. (2022). Stevia aquatic extract protects the pancreas from streptozocin (STZ) induced damage: A stereological study. Indian Journal of Experimental Biology, 60, 299307.Google Scholar
Ding, G. L., Liu, Y., Liu, M. E., Pan, J. X., Guo, M. X., Sheng, J. Z. and Huang, H. F. (2015). The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian Journal of Andrology, 17(6), 948953. doi: 10.4103/1008-682X.150844 Google ScholarPubMed
Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1):5.47, 41–45.47. doi: 10.1002/0471141755.ph0547s70 CrossRefGoogle ScholarPubMed
Ganjiani, V., Ahmadi, N. and Raayat Jahromi, A. (2020). Protective effects of Stevia rebaudiana aqueous extract on experimental unilateral testicular ischaemia/reperfusion injury in rats. Andrologia, 52(2), e13469. doi: 10.1111/and.13469 CrossRefGoogle ScholarPubMed
Gholizadeh, F., Mokarram, P., Dastgheib, S. and Rahpeima, Z. (2018). The effect of the aquatic extract of Stevia on the MDA level and catalase activity in the testicular tissue of streptozotocin-nicotinamide-induced diabetic rats. Shiraz E-Medical Journal, In(Press). doi: 10.5812/semj.61044 CrossRefGoogle Scholar
Gholizadeh, F., Dastghaib, S., Koohpeyma, F., Bayat, E. and Mokarram, P. (2019). The protective effect of Stevia rebaudiana Bertoni on serum hormone levels, key steroidogenesis enzymes, and testicular damage in testes of diabetic rats. Acta Histochemica, 121(7), 833840. doi: 10.1016/j.acthis.2019.08.001 CrossRefGoogle ScholarPubMed
Gil, J. C., Lingan, P., Flores, C. and Chimoy, P. J. (2008). Efecto a largo plazo del consumo de Stevia rebaudiana (Magnoliopsida, Asteraceae) en la fertilidad de ratones. Revista Peruana de Biología, 15(1), 8590. doi: 10.15381/rpb.v15i1.1680 CrossRefGoogle Scholar
Gopal, R. A., Bothra, N., Acharya, S. V., Ganesh, H. K., Bandgar, T. R., Menon, P. S. and Shah, N. S. (2010). Treatment of hypogonadism with testosterone in patients with type 2 diabetes mellitus. Endocrine Practice, 16(4), 570576. doi: 10.4158/EP09355.OR CrossRefGoogle ScholarPubMed
Harismah, K., Mirzaei, M. and Fuadi, A. M. (2018). Stevia rebaudiana in food and beverage applications and its potential antioxidant and antidiabetic: Mini review. Advanced Science Letters, 24(12), 91339137. doi: 10.1166/asl.2018.12110 CrossRefGoogle Scholar
He, Z., Yin, G., Li, Q. Q., Zeng, Q. and Duan, J. (2021). Diabetes mellitus causes male reproductive dysfunction: A review of the evidence and mechanisms. In Vivo, 35(5), 25032511. doi: 10.21873/invivo.12531 CrossRefGoogle ScholarPubMed
Hussain, F. and Hafeez, J. (2021). Therapeutic attributes of Stevia rebaudiana Leaves in diabetic animal model. RADS Journal of Biological Research and Applied Science, 12(1), 17.CrossRefGoogle Scholar
Inzucchi, S. E. (2013). Diagnosis of diabetes. New England Journal of Medicine, 368(2), 193. doi: 10.1056/NEJMc1212738 Google ScholarPubMed
Jeppesen, P. B., Gregersen, S., Rolfsen, S. E., Jepsen, M., Colombo, M., Agger, A., Xiao, J., Kruhøffer, M., Ørntoft, T. and Hermansen, K. (2003). Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism: Clinical and Experimental, 52(3), 372378. doi: 10.1053/meta.2003.50058 CrossRefGoogle ScholarPubMed
Karganov, M. Y., Alchinova, I. B., Tinkov, A. A., Medvedeva, Y. S., Lebedeva, M. A., Ajsuvakova, O. P., Polyakova, M. V., Skalnaya, M. G., Burtseva, T. I., Notova, S. V., Khlebnikova, N. N. and Skalny, A. V. (2020). Streptozotocin (STZ)-induced diabetes affects tissue trace element content in rats in a dose-dependent manner. Biological Trace Element Research, 198(2), 567574. doi: 10.1007/s12011-020-02090-2 CrossRefGoogle ScholarPubMed
Kianifard, D., Sadrkhanlou, R.-A. and Hasanzadeh, S. (2011). The histological, histomorphometrical and histochemical changes of testicular tissue in the metformin treated and untreated streptozotocin-induced adult diabetic rats. In Veterinary Research Forum.Google Scholar
Kifle, Z. D., Yesuf, J. S. and Atnafie, S. A. (2020). Evaluation of in vitro and in vivo anti-diabetic, anti-hyperlipidemic and anti-oxidant activity of flower crude extract and solvent fractions of Hagenia abyssinica (Rosaceae). Journal of Experimental Pharmacology, 12, 151167. doi: 10.2147/JEP.S249964 CrossRefGoogle ScholarPubMed
Kolb, H. (1987). Mouse models of insulin dependent diabetes: Low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes/Metabolism Reviews, 3(3), 751778. doi: 10.1002/dmr.5610030308 CrossRefGoogle ScholarPubMed
Kottaisamy, C. P. D., Raj, D. S., Prasanth Kumar, V. and Sankaran, U. (2021). Experimental animal models for diabetes and its related complications-a review. Laboratory Animal Research, 37(1), 23. doi: 10.1186/s42826-021-00101-4 CrossRefGoogle ScholarPubMed
Laleethambika, N., Anila, V., Manojkumar, C., Muruganandam, I., Giridharan, B., Ravimanickam, T. and Balachandar, V. (2019). Diabetes and sperm DNA damage: Efficacy of antioxidants. SN Comprehensive Clinical Medicine, 1(1), 4959. doi: 10.1007/s42399-018-0012-9 CrossRefGoogle Scholar
Madan, S., Ahmad, S., Singh, G., Kohli, K., Kumar, Y., Singh, R. and Garg, M. (2010). Stevia rebaudiana (Bert.) Bertoni—A Review. Indian Journal of Natural Products and Resources, 1, 267286.Google Scholar
Maresch, C. C., Stute, D. C., Ludlow, H., Hammes, H. P., de Kretser, D. M., Hedger, M. P. and Linn, T. (2017). Hyperglycemia is associated with reduced testicular function and activin dysregulation in the Ins2Akita+/− mouse model of type 1 diabetes. Molecular and Cellular Endocrinology, 446, 91101. doi: 10.1016/j.mce.2017.02.020 CrossRefGoogle ScholarPubMed
Maresch, C. C., Stute, D. C., Alves, M. G., Oliveira, P. F., de Kretser, D. M. and Linn, T. (2018). Diabetes-induced hyperglycemia impairs male reproductive function: A systematic review. Human Reproduction Update, 24(1), 86105. doi: 10.1093/humupd/dmx033 CrossRefGoogle ScholarPubMed
Mohd-Radzman, N. H., Ismail, W. I. W., Adam, Z., Jaapar, S. S. and Adam, A. (2013). Potential roles of Stevia rebaudiana Bertoni in abrogating insulin resistance and diabetes: A review. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, 718049. doi: 10.1155/2013/718049 CrossRefGoogle ScholarPubMed
Morsi, A. A., Mersal, E. A., Farrag, A. R. H., Abdelmoneim, A. M., Abdelmenem, A. M. and Salim, M. S. (2022). Histomorphological changes in a rat model of polycystic ovary syndrome and the contribution of Stevia leaf extract in modulating the ovarian fibrosis, VEGF, and TGF-β immunoexpressions: Comparison with metformin. Acta Histochemica et Cytochemica, 55(1), 923. doi: 10.1267/ahc.21-00081 CrossRefGoogle Scholar
Nna, V. U., Bakar, A. B. A., Ahmad, A. and Mohamed, M. (2020). Diabetes-induced testicular oxidative stress, inflammation, and caspase-dependent apoptosis: The protective role of metformin. Archives of Physiology and Biochemistry, 126(5), 377388. doi: 10.1080/13813455.2018.1543329 CrossRefGoogle ScholarPubMed
Nolan, C. J. and Prentki, M. (2019). Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diabetes and Vascular Disease Research, 16(2), 118127. doi: 10.1177/1479164119827611 CrossRefGoogle ScholarPubMed
Oridupa, O. A., Folasire, O. F., Owolabi, A. J. and Aina, O. (2017). Effect of traditional treatment of diabetes mellitus with Xanthosoma sagittifolium on the male reproductive system of alloxan-induced diabetic Wistar rats. Drug Research, 67(6), 337342. doi: 10.1055/s-0043-103575 Google ScholarPubMed
Panti, A. A., Shehu, C. E., Saidu, Y., Tunau, K. A., Nwobodo, E. I., Jimoh, A., Bilbis, L. S., Umar, A. B. and Hassan, M. (2018). Oxidative stress and outcome of antioxidant supplementation in patients with polycystic ovarian syndrome (PCOS). International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 7(5), 1667. doi: 10.18203/2320-1770.ijrcog20181892 CrossRefGoogle Scholar
Pitteloud, N., Hardin, M., Dwyer, A. A., Valassi, E., Yialamas, M., Elahi, D. and Hayes, F. J. (2005). Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. Journal of Clinical Endocrinology and Metabolism, 90(5), 26362641. doi: 10.1210/jc.2004-2190 CrossRefGoogle ScholarPubMed
Pivonello, R., Menafra, D., Riccio, E., Garifalos, F., Mazzella, M., De Angelis, C. and Colao, A. (2019). Metabolic disorders and male hypogonadotropic hypogonadism. Frontiers in Endocrinology, 10, 345. doi: 10.3389/fendo.2019.00345 CrossRefGoogle ScholarPubMed
Quinn, P. G. and Payne, A. H. (1984). Oxygen-mediated damage of microsomal cytochrome P-450 enzymes in cultured Leydig cells. Role in steroidogenic desensitization. Journal of Biological Chemistry, 259(7), 41304135. doi: 10.1016/S0021-9258(17)43019-5 CrossRefGoogle ScholarPubMed
Ranjbar, T., Nekooeian, A. A., Tanideh, N., Koohi-Hosseinabadi, O., Masoumi, S. J., Amanat, S., Azarpira, N. and Monabati, A. (2020). A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. Journal of Food Biochemistry, 44(8), e13242. doi: 10.1111/jfbc.13242 CrossRefGoogle ScholarPubMed
Ray, J., Kumar, S., Laor, D., Shereen, N., Nwamaghinna, F., Thomson, A., Perez, J. P., Soni, L. and McFarlane, S. I. (2020). Effects of Stevia rebaudiana on glucose homeostasis, blood pressure and inflammation: A critical review of past and current research evidence. International Journal of Clinical Research and Trials, 5(1). doi: 10.15344/2456-8007/2020/142 CrossRefGoogle Scholar
Schoeller, E. L., Albanna, G., Frolova, A. I. and Moley, K. H. (2012). Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes, 61(7), 18691878. doi: 10.2337/db11-1527 CrossRefGoogle ScholarPubMed
SenGupta, P., Arafa, M. and Elbardisi, H. (2019). Hormonal regulation of spermatogenesis. In Molecular signaling in spermatogenesis and male infertility (pp. 4149). CRC Press.CrossRefGoogle Scholar
Shukia, R., Sharma, S. B., Puri, D., Prabhu, K. M. and Murthy, P. S. (2000). Medicinal plants for treatment of diabetes mellitus. Indian Journal of Clinical Biochemistry, 15(1) Suppl. 1, 169177. doi: 10.1007/BF02867556 CrossRefGoogle Scholar
Shukla, S., Mehta, A., Mehta, P. and Bajpai, V. K. (2012). Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Experimental and Toxicologic Pathology, 64(7–8), 807811. doi: 10.1016/j.etp.2011.02.002 CrossRefGoogle ScholarPubMed
Simon, L., Proutski, I., Stevenson, M., Jennings, D., McManus, J., Lutton, D. and Lewis, S. E. (2013). Sperm DNA damage has a negative association with live-birth rates after IVF. Reproductive Biomedicine Online, 26(1), 6878. doi: 10.1016/j.rbmo.2012.09.019 CrossRefGoogle Scholar
Stadler, K. (2013). Oxidative stress in diabetes. Diabetes, 272287.CrossRefGoogle Scholar
Talebi, A. R., Mangoli, E., Nahangi, H., Anvari, M., Pourentezari, M. and Halvaei, I. (2014). Vitamin C attenuates detrimental effects of diabetes mellitus on sperm parameters, chromatin quality and rate of apoptosis in mice. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 181, 3236. doi: 10.1016/j.ejogrb.2014.07.007 CrossRefGoogle ScholarPubMed
Wang, Y., Zhang, Z., Guo, W., Sun, W., Miao, X., Wu, H., Cong, X., Wintergerst, K. A., Kong, X. and Cai, L. (2014). Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function. American Journal of Physiology. Endocrinology and Metabolism, 307(1), E14E23. doi: 10.1152/ajpendo.00702.2013 CrossRefGoogle ScholarPubMed
Yrga Adugna, B., Mequanint Adinew, G., Ayalew Getahun, K., Endale Gurmu, A., Yirga Berhie, A., Awoke, T. and Tessema Desta, G. (2022). Evaluation of the antidiabetic activity of hydromethanolic roots extracts of Rumex abyssinicus Jacq: (Polygonaceae) in Swiss albino mice. Evidence-Based Complementary and Alternative Medicine: eCAM, 2022, 5193250. doi: 10.1155/2022/5193250 CrossRefGoogle ScholarPubMed
Zhao, L., Gu, Q., Xiang, L., Dong, X., Li, H., Ni, J., Wan, L., Cai, G. and Chen, G. (2017). Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Therapeutics and Clinical Risk Management, 13, 10991105. doi: 10.2147/TCRM.S141738 CrossRefGoogle ScholarPubMed
Zhao, Y., Song, W., Wang, Z., Wang, Z., Jin, X., Xu, J., Bai, L., Li, Y., Cui, J. and Cai, L. (2018). Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biology, 14, 609617. doi: 10.1016/j.redox.2017.11.007 CrossRefGoogle ScholarPubMed
Zhong, O., Ji, L., Wang, J., Lei, X. and Huang, H. (2021). Association of diabetes and obesity with sperm parameters and testosterone levels: A meta-analysis. Diabetology and Metabolic Syndrome, 13(1), 109. doi: 10.1186/s13098-021-00728-2 CrossRefGoogle ScholarPubMed
Zirkin, B. R. and Papadopoulos, V. (2018). Leydig cells: formation, function, and regulation. Biology of Reproduction, 99(1), 101111. doi: 10.1093/biolre/ioy059 CrossRefGoogle ScholarPubMed