Skip to main content Accessibility help
×
Home

Absence of connexin43 and connexin45 does not disturb pre- and peri-implantation development

  • Kiyomasa Nishii (a1), Yasushi Kobayashi (a2) and Yosaburo Shibata (a3)

Summary

Gap junctional intercellular communication is assumed to play an important role during pre- and peri-implantation development. In this study, we eliminated connexin43 (Cx43) and connexin45 (Cx45), major gap junctional proteins in the pre- and peri-implantation embryo. We generated Cx43 −/− Cx45 −/− embryos by Cx43 +/− Cx45 +/− intercrossing, because mice deficient in Cx43 (Cx43 −/−) exhibit perinatal lethality and those deficient in Cx45 (Cx45 −/−) exhibit early embryonic lethality. Wild-type, Cx43 −/−, Cx45 −/−, and Cx43 −/− Cx45 −/− blastocysts all showed similar outgrowths in in vitro culture. Moreover, Cx43 −/− Cx45 −/− embryos were obtained at the expected Mendelian ratio up to embryonic day 9.5, when the Cx45 −/− mutation proved lethal. The Cx43 −/− Cx45 −/− embryos seemed to have no additional developmental abnormalities in comparison with the single knockout strains. Thus, pre- and peri-implantation development does not require Cx43 and Cx45. Other gap junctional proteins are expressed around these stages and these may compensate for the lack of Cx43 and Cx45.

Copyright

Corresponding author

All correspondence to: Kiyomasa Nishii. Department of Anatomy and Neurobiology, National Defense Medical College, 3–2 Namiki, Tokorozawa, Saitama 359–8513, Japan. e-mail: nishii@ndmc.ac.jp

References

Hide All
Alcoléa, S., Théveniau-Ruissy, M., Jarry-Guichard, T., Marics, I., Tzouanacou, E., Chauvin, J.P., Briand, J.P., Moorman, A.F., Lamers, W.H. & Gros, D.B. (1999). Downregulation of connexin 45 gene products during mouse heart development. Circ. Res. 84, 1365–79.
Becker, D.L., Evans, W.H., Green, C.R. & Warner, A. (1995). Functional analysis of amino acid sequences in connexin43 involved in intercellular communication through gap junctions. J. Cell Sci. 108, 1455–67.
Bevilacqua, A., Loch-Caruso, R. & Erickson, R.P. (1989). Abnormal development and dye coupling produced by antisense RNA to gap junction protein in mouse preimplantation embryos. Proc. Natl. Acad. Sci. USA 86, 5444–8.
Cohen-Salmon, M., Ott, T., Michel, V., Hardelin, J.P., Perfettini, I., Eybalin, M., Wu, T., Marcus, D.C., Wangemann, P., Willecke, K. & Petit, C. (2002). Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 12, 1106–11.
Dahl, E., Winterhager, E., Reuss, B., Traub, O., Butterweck, A. & Willecke, K. (1996). Expression of the gap junction proteins connexin31 and connexin43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. J. Cell Sci. 109, 191–7.
Darrow, B.J., Laing, J.G., Lampe, P.D., Saffitz, J.E. & Beyer, E.C. (1995). Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ. Res. 76, 381–7.
Davies, T.C., Barr, K.J., Jones, D.H., Zhu, D. & Kidder, G.M. (1996). Multiple members of the connexin gene family participate in preimplantation development of the mouse. Dev. Genet. 18, 234–43.
De Sousa, P.A., Valdimarsson, G., Nicholson, B.J. & Kidder, G.M. (1993). Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos. Development 117, 1355–67.
De Sousa, P.A., Juneja, S.C., Caveney, S., Houghton, F.D., Davies, T.C., Reaume, A.G., Rossant, J. & Kidder, G.M. (1997). Normal development of preimplantation mouse embryos deficient in gap junctional coupling. J. Cell Sci. 110, 1751–18.
Ducibella, T. & Anderson, E. (1975). Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev. Biol. 47, 4558.
Egashira, K., Nishii, K., Nakamura, K., Kumai, M., Morimoto, S. & Shibata, Y. (2004). Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 280, 973–9.
Grümmer, R., Reuss, B. & Winterhager, E. (1996). Expression pattern of different gap junction connexins is related to embryo implantation. Int. J. Dev. Biol. 40, 361–7.
Gutstein, D.E., Morley, G.E., Tamaddon, H., Vaidya, D., Schneider, M.D., Chen, J., Chien, K.R., Stuhlmann, H. & Fishman, G.I. (2001a). Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 88, 333–9.
Gutstein, D.E., Morley, G.E., Vaidya, D., Liu, F., Chen, F.L., Stuhlmann, H. & Fishman, G.I. (2001b). Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation 104, 1194–9.
Hatler, J.M., Essner, J.J. & Johnson, R.G. (2009). A gap junction connexin is required in the vertebrate left-right organizer. Dev. Biol. 336, 183–91.
Houghton, F.D. (2005). Role of gap junctions during early embryo development. Reproduction 129, 129–35.
Houghton, F.D., Thönnissen, E., Kidder, G.M., Naus, C.C.G., Willecke, K. & Winterhager, E. (1999). Doubly mutant mice, deficient in connexin32 and -43, show normal prenatal development of organs where the two gap junction proteins are expressed in the same cells. Dev. Genet. 24, 512.
Houghton, F.D., Barr, K.J., Walter, G., Gabriel, H.D., Grümmer, R., Traub, O., Leese, H.J., Winterhager, E. & Kidder, G.M. (2002). Functional significance of gap junctional coupling in preimplantation development. Biol. Reprod. 66, 1403–12.
Juneja, S.C., Barr, K.J., Enders, G.C. & Kidder, G.M. (1999). Defects in the germ line and gonads of mice lacking connexin43. Biol. Reprod. 60, 1263–70.
Kanady, J.D., Dellinger, M.T., Munger, S.J., Witte, M.H. & Simon, A.M. (2011). Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev. Biol. 354, 253–66.
Kaufman, M.H. (1992). The Atlas of Mouse Development. London: Academic Press.
Kibschull, M., Magin, T.M., Traub, O. & Winterhager, E. (2005). Cx31 and Cx43 double-deficient mice reveal independent functions in murine placental and skin development. Dev. Dyn. 233, 853–63.
Krüger, O., Plum, A., Kim, J.S., Winterhager, E., Maxeiner, S., Hallas, G., Kirchhoff, S., Traub, O., Lamers, W.H. & Willecke, K. (2000). Defective vascular development in connexin 45-deficient mice. Development 127, 4179–93.
Kumai, M., Nishii, K., Nakamura, K., Takeda, N., Suzuki, M. & Shibata, Y. (2000). Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127, 3501–12.
Lee, S., Gilula, N.B. & Warner, A.E. (1987). Gap junctional communication and compaction during preimplantation stages of mouse development. Cell 51, 851–60.
Levin, M. (2007). Gap junctional communication in morphogenesis. Prog. Biophys. Mol. Biol. 94, 186206.
Liao, Y., Day, K.H., Damon, D.N. & Duling, B.R. (2001). Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc. Natl. Acad. Sci USA 98, 9989–94.
Lo, C.W. & Gilula, N.B. (1979a). Gap junctional communication in the post-implantation mouse embryo. Cell 18, 411–22.
Lo, C.W. & Gilula, N.B. (1979b). Gap junctional communication in the preimplantation mouse embryo. Cell 18, 399409.
Malassiné, A. & Cronier, L. (2005). Involvement of gap junctions in placental functions and development. Biochim. Biophys. Acta 1719, 117–24.
Martinez, A.D., Hayrapetyan, V., Moreno, A.P. & Beyer, E.C. (2002). Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ. Res. 90, 1100–7.
Maxeiner, S., Dedek, K., Janssen-Bienhold, U., Ammermüller, J., Brune, H., Kirsch, T., Pieper, M., Degen, J., Krüger, O., Willecke, K. & Weiler, R. (2005). Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J. Neurosci. 25, 566–76.
Nishii, K., Kumai, M. & Shibata, Y. (2001). Regulation of the epithelial-mesenchymal transformation through gap junction channels in heart development. Trends Cardiovasc. Med. 11, 213–8.
Nishii, K., Kumai, M., Egashira, K., Miwa, T., Hashizume, K., Miyano, Y. & Shibata, Y. (2003). Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect. Cell Commun. Adhes. 10, 365–9.
Nishii, K., Shibata, Y. & Kobayashi, Y. (2014). Connexin mutant embryonic stem cells and human diseases. World J. Stem Cells 6, 571–8.
Nishii, K., Tsuzuki, T., Kumai, M., Takeda, N., Koga, H., Aizawa, S., Nishimoto, T. & Shibata, Y. (1999). Abnormalities of developmental cell death in Dad1-deficient mice. Genes Cells 4, 243–52.
Plum, A., Winterhager, E., Pesch, J., Lautermann, J., Hallas, G., Rosentreter, B., Traub, O., Herberhold, C. & Willecke, K. (2001). Connexin31-deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev. Biol. 231, 334–47.
Reaume, A.G., de Sousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D., Davies, T.C., Juneja, S.C., Kidder, G.M. & Rossant, J. (1995). Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–4.
Reuss, B., Hellmann, P., Traub, O., Butterweck, A. & Winterhager, E. (1997). Expression of connexin31 and connexin43 genes in early rat embryos. Dev. Genet. 21, 8290.
Schrickel, J.W., Kreuzberg, M.M., Ghanem, A., Kim, J.S., Linhart, M., Andrié, R., Tiemann, K., Nickenig, G., Lewalter, T. & Willecke, K. (2009). Normal impulse propagation in the atrioventricular conduction system of Cx30.2/Cx40 double deficient mice. J. Mol. Cell. Cardiol. 46, 644–52.
Seki, A., Nishii, K. & Hagiwara, N. (2015). Gap junctional regulation of pressure, fluid force, and electrical fields in the epigenetics of cardiac morphogenesis and remodeling. Life Sci. 129, 2734.
Simon, A.M. & McWhorter, A.R. (2002). Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev. Biol. 251, 206–20.
Simon, A.M., McWhorter, A.R., Dones, J.A., Jackson, C.L. & Chen, H. (2004). Heart and head defects in mice lacking pairs of connexins. Dev. Biol. 265, 369–83.
Theis, M., de Wit, C., Schlaeger, T. M., Eckardt, D., Krüger, O., Döring, B., Risau, W., Deutsch, U., Pohl, U. & Willecke, K. (2001). Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29, 113.
Vance, M.M. & Wiley, L.M. (1999). Gap junction intercellular communication mediates the competitive cell proliferation disadvantage of irradiated mouse preimplantation embryos in aggregation chimeras. Radiat. Res. 152, 544–51.
Vandenberg, L.N. & Levin, M. (2013). A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 379, 115.
Wörsdörfer, P., Maxeiner, S., Markopoulos, C., Kirfel, G., Wulf, V., Auth, T., Urschel, S., von Maltzahn, J. & Willecke, K. (2008). Connexin expression and functional analysis of gap junctional communication in mouse embryonic stem cells. Stem Cells 26, 431–9.
Xia, C.H., Cheng, C., Huang, Q., Cheung, D., Li, L., Dunia, I., Benedetti, L.E., Horwitz, J. & Gong, X. (2006). Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells. Exp. Eye Res. 83, 688–96.
Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–84.
Yu, J.N., Xue, C.Y., Wang, X.G., Lin, F., Liu, C.Y., Lu, F.Z. & Liu, H.L. (2009). 5-AZA-2′-deoxycytidine (5-AZA-CdR) leads to down-regulation of Dnmt1o and gene expression in preimplantation mouse embryos. Zygote 17, 137–45.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed