Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T06:40:56.072Z Has data issue: false hasContentIssue false

Localisation and capacitation-dependent loss of buffalo sperm-coating antigens shared with rat sperm

Published online by Cambridge University Press:  26 September 2008

Paola Venditti
Affiliation:
Università ‘Federico II’ di Napoli and International Institute of Genetices and Biophysics, Naples, Italy
Paolo Bergamo
Affiliation:
Università ‘Federico II’ di Napoli and International Institute of Genetices and Biophysics, Naples, Italy
Riccardo Talevi
Affiliation:
Università ‘Federico II’ di Napoli and International Institute of Genetices and Biophysics, Naples, Italy
Giovanni sansone
Affiliation:
Università ‘Federico II’ di Napoli and International Institute of Genetices and Biophysics, Naples, Italy
Paolo Abrescia*
Affiliation:
Università ‘Federico II’ di Napoli and International Institute of Genetices and Biophysics, Naples, Italy
*
Professor P. Abrescia, Dipartimento di Fisiologia Generle ed Ambientale, via Mezzocannone 8, I-80134 Naples, Italy. Telephone: 0039 81 5526027. Fax: 0039 81 5526194.

Summary

The heterodimeric sperm-coating protein CFS was previously localised on the middle-piece region of rat spermatozoa by anti-CFS rabbit antibodies. CFS-immunorelated antigens were detected in the secretion of the water buffalo seminal vesicle by protein electrophoresis and Western blotting. Spermatozoa from buffalo epididymal cauda were incubated with the rat antigen and, upon immunostaining with anti-CFS antibodies and goat anti-rabbit fluorescein isothiocyanate (FITC)-conjugated IgGs, CFS was found attached on both the post-acrosomal region and the tail. Indirect immunofluorescence analysis permitted the localisation of CFS-related antigens on the same domains of buffalo ejaculated spermatozoa. These results suggest that the buffalo antigens not only share some epitopes with the homologous rat antigen but may also have some of its functional properties. Ejaculated spermatozoa were capacitated in vitro and then assayed for their content of CFS-like antigens. An inverse relationship was found between the levels of capacitation and the amounts of antigens detected, thus suggesting that the in vitro treatment was effective at removing CFS-related proteins from the cell surface. Titration of these proteins to proteins to monitor plasma membrane changes during sperm manipulation or to evaluate sperm quality is proposed.

Type
Commentary
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrescia, P., Lombardi, G., De Rosa, M., Quagliozzi, L., Guardiola, J. & Metafora, S. (1985). Indentification and preliminary characterization of a sperm-binding protein in normal human semen, J. Reprod. Fertil. 73, 71–7.CrossRefGoogle Scholar
Aumöller, G., Vesper, M., Seitz, J., Kemme, M., & Scheit, K.H., (1988). Binding of a major secretory protein from bull seminal vesicles to bovine spermatozoa. cell Tissue Res. 252, 377–84.Google Scholar
Bergamo, P., Vendittti, P., Sansone, G., Ferrara, L., & Abrescia, P. (1991). Isolation of sperm-coating antigens from seminal vesicle secretion of B. bubalis In Proceedings of the III World Buffalo CongressVlahov, K., Alexiev, A. & Konova, M., pp. 650–9. Sofia: SIKOM 22 press.Google Scholar
Bergamo, P., Venditti, P., Sansone, G., Ferrara, L., & Abrescia, P. (1992). Detection of a sperm-coating antigen in the semen of Bubalus bubalis. Comp. Biochem. physiol. B 102, 733–42Google ScholarPubMed
Bergamo, P., Venditti, P., Talevi, R., Sansone, G. & Abrescia, P. (1993). Two rat middle-piece coating antigens are lost upon in vitro capacitation. Cell Physiol. Biochem. 3, 146–56CrossRefGoogle Scholar
Berger, T.,(1990). Changes in exposed membrane proteins during in vitro capacitation of boar sperm. Mol. Reprod. Dev. 27, 249–53.CrossRefGoogle ScholarPubMed
Biggers, J.D., Whitten, W.K. & Wittingham, D.G. (1971). The culture of mouse embryos in vitro. In Methods in Mammalian Embriology, ed. Daniel, J.D. pp. 86116, San Francisco: W.H. Freeman.Google Scholar
Cowan, A.E.primakoff, P., & Myles, D.G. (1986). Sperm exocytosis increases the amount of PH-20 antigen on the surface of guinea pig sperm. J. Cell Biol. 93, 243–9.Google Scholar
Cross, N.L., Morales, P., Overstreet, J.W. & Hanson, F.W. (1986). Two simple methods for detecting acrosome-reacted human sperm. Gamete Res. 15, 213–26.CrossRefGoogle Scholar
cross, N.L., & Overstreet, J.W. (1987). Glycoconjugates of the human sperm surface: distribution and alterations that accompany capacitation in vitro. Gamete Res. 16, 2335.CrossRefGoogle ScholarPubMed
cuasnicú, P.S., Echeverria, F.G., Piazza, A.D., Cameo, M.S. & Blaquiev, J.A. (1984). Antibodies against epididymal glycoproteins block fertilizing ability in rat. J. Reprod. Fertil. 72, 467–71.CrossRefGoogle ScholarPubMed
de Lamirande, E. & Gagnon, C. (1984).Origin of a motility inhibitor within the male reproductive tract. J. Androl. 5, 269–76.CrossRefGoogle ScholarPubMed
Eddy, E.M. (1988). The spermatozoon. In The physiology of Reproduction, ed. Konbil, E. & Neil, J., pp. 2778New York: Raven press.Google Scholar
Esaguy, N., Welch, J.E. & O'Rand, M.G. (1988). Ultrastructural mapping of a sperm plasma membrane autoantigen befor and after the acrosome reaction, Gamete Res. 19, 387–99.CrossRefGoogle Scholar
Fawell, S.E. & McDonald, C.J. (1987). Comparison of seminal vesicle secretory proteins using antibody and and nucleotide probes. Mol. Cell Endocrinol. 50, 107–14.CrossRefGoogle ScholarPubMed
Fénichel, P., Dohr, G., Grivaux, C., Cervoni, F., Donzeau, M., & Hsi, B.L. (1990). Localization and characterization of the acrosomal antigen recognized by GB24 on human spermatozoa Mol. Reprod. Dev. 27, 173–8.CrossRefGoogle ScholarPubMed
Foresta, C., caretto, A., Indino, M., Betterle, C. & Sacndellari, C. (1986). Calcitonin in human seminal plasma and its localization on human spermatozoa. Andrologia 18, 470–3.CrossRefGoogle ScholarPubMed
Fraser, L.R. & Ahuja, K.H. (1988).Metabolic and surface events in fertilization, Gamete Res. 20,491519.CrossRefGoogle ScholarPubMed
Gagnon, C., Souaid, V. & Robert, M. (1990). A sperm motility inhibitor in seminal plasma:origin, purification, molecular processing and mode of action. In Comparative Spermatology 20 Years After, ed. Baccetti, B. pp. 1033–7. New York: Raven press.Google Scholar
Jones, R., Shalgi, R., Hoyland, J., & Phillips, D.M. (1990). Topographical rearrangement of a plasma membrane antigen during capacitation of rat spermatozoa. Dev. Biol. 139, 349–62.CrossRefGoogle ScholarPubMed
Hinrichsen-Kohane, A.C., Hinrichsen, M.J. & Schill, W.B. (1984) Molecular events leading to fertilization. Andrologia 16, 321–41.CrossRefGoogle ScholarPubMed
Hoos, P.C. & Olson, G.E. (1988). Characterization of 23 kDa sperm-binding polypeptide of the golden hamster epididymis. Biol. Reprod. 39, 131–40.Google ScholarPubMed
Iwamoto, T. & Gagnon, C. (1990). A human seminal plasma protein blocks the motility of human spermatozoa. J. Urol. 140, 1045–8.CrossRefGoogle Scholar
Laemmli, U.K. (1970). cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lakoski, K., Williams, C. & saling, P. (1989). proteins of the acrosomal region in mouse sperm: immunological probes reveal post-testicular modifications. Gamete Res. 23, 2137.CrossRefGoogle ScholarPubMed
Lopez, L.C. & Shur, B.D. (1987). Redistribution of mouse sperm surface galactosyltrasferase after acrosome reaction J. Cell Biol. 105, 4663–9.CrossRefGoogle Scholar
Kinsey, W.H. & Koehler, J.K. (1978). Cell surface changes associated with in vitro capacitation of hamster sperm. J. Ultrastruct. Res. 64, 113.CrossRefGoogle ScholarPubMed
Klint, M., Fridberg, A., Menge, A., Sällström, J. & Plöen, L. (1987) Boar sperm surface glycoproteins: isolation, localization, and temporal expression during spermatogenesis. Gamete. Res. 17, 173–90.CrossRefGoogle ScholarPubMed
Maffei, A., Paonessa, G., Abrescia, P., Metafora, S. & Guardiola, J. (1984). Polymorphism of rat seminal vesicle secretory proteins:characterzation of svp-1 and svp-2 and their indentification with the major secretory proteins IV and V. Biochem. Genet. 22, 567–76.CrossRefGoogle Scholar
Manco, G., Sansone, G. & Abrescia, P. (1987). Characterization of a sperm coating antigen in rat. It. J. Biochem 36, 339–41.Google Scholar
Manco, G. & Abrescia, P. (1988). A major secretory protein from rat seminal vesicle binds ejaculate spermatozoa. Gamete Res. 21, 7184.CrossRefGoogle Scholar
Manco, G., Sansone, G., cotugno, M. & Abrescia, P. (1988). Detection of sperm-coating antigens immunologically correlated to a seminal protein in rat. Eur. J. Cell Biol. 47, 270–4.Google Scholar
Manco, G., Sansone, G. & Abrescia, P. (1989). Interaction of proteins RSV IV and RSV V rat seminal vesicle secretion. J. Exp. Zool. 249, 193202.CrossRefGoogle ScholarPubMed
Metafora, S., Guardiola, J. & Abrescia, P. (1986). In vitro synthesis of different antigens related to the protein RSV IV secreted from the rat seminal vesicle epithelium. Bull. Mol. Biol. Med. 11, 1118.Google Scholar
Metafora, S., Lombardi, G., De Rose, M., Quagliozzi, L., Ravagnan, G., Peluso, G. & Abrescia, P. (1987). A protein family immunorelated to a sperm-binding protein and its regulation in human semen. Gamete Res. 16, 229–41.CrossRefGoogle ScholarPubMed
O'Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of protein. J. Biol. Chem. 50, 4007–21.CrossRefGoogle Scholar
Paonessa, G., Tajana, G., Abrescia, P., De Santis, V., Gentile, V. & Porta, R. (1984). A transglutaminase-mediated modifications of the rat sperm surface in vitro. Science. 226, 852–5.CrossRefGoogle ScholarPubMed
Peitz, B. (1988). Effect of seminal seminal vesicle fluid components on sperm motility in the house mouse. J. Reprod. Fertil. 83, 169–76.CrossRefGoogle ScholarPubMed
Peitz, B. & Mabee, J. (1990). The effects of fractionated seminal vesicles secretion on sperm motility. In Comparative Spermatology 20 Years After ed. Baccetti, B., pp. 1059–61. New York: Raven press.Google Scholar
Primakoff, P. & Myles, D.G. (1983). A map of the guinea pig sperm surface constructed with monoclonal antibodies. Exp. Biol. 98, 417–28.Google ScholarPubMed
primakoff, P., Hyatt, H. & Myles, D.G. (1985). A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J. Cell Biol. 101, 2239–44.CrossRefGoogle Scholar
primakoff, P., Hyatt, H. & Tredlick-Kline, J. (1987). Identification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 104, 141–9.CrossRefGoogle ScholarPubMed
Rockwenger, L. & Cuasnicú, P.S. (1992). Redistribution of a rat sperm epididymal glycoprotein after in vitro and in vivo capacitation. Mol. Reprod. Develop. 31, 3441.Google Scholar
Russell, L.D., Montag, B., Hunt, W. & Peterson, R.N. (1985). Properties of boar sperm plasma membranes (PM): proteins released by washing and differential solubility in salts, detergents, and sensitivity to surface radiolabelling. Gamete Res. 11, 237–52.CrossRefGoogle Scholar
Saling, P.M. (1986). Mouse sperm antigens that participate in fertilization. IV. A monoclonal antibody prevents zona penetration by inhibition of the acrosome reaction. Dev. Biol. 117, 511–19.CrossRefGoogle Scholar
Saxena, N., Peterson, R.N., Shari, S., Saxena, N.K. & Russell, L.D. (1986). Changes of surface antigens during in vitro capacition of boar spermatozoa as detected monoclonal antibodies. J. Reprod. Fertil. 78, 601–14.CrossRefGoogle ScholarPubMed
Saxena, N.K., Russell, L.D., Saxena, N. & Peterson, R.N. (1986). Immunofluorescene antigen localization on boar sperm plasma membranes:monoclonal antibodies reveal apparent new domains and apparent redistribution of surface antigens during sperm maturation an at ejaculation. Anat. Rec. 214, 238–52.CrossRefGoogle Scholar
Shalgi, R., Matityahu, A., Gaunt, S.J. & Jones, R. (1990). Antigens on rat spermatozoa with a potential role in fertilization. Mol. Reprod. Dev., 25, 286–92.CrossRefGoogle ScholarPubMed
Shivaji, S., Scheit, K.H. & Bhargava, P.M. (1990). Proteins with Antifertility Activity. In Proteins of Seminal Plasma. Shivaji, S., Scheit, K.H. & Bhargave, P.M., pp. 331–56. New York: Wiley.Google Scholar
Vernon, R.B., Hamilton, M.S. & Eddy, E.M. (1985). Effects of in vivo and in vitro fertilization environments on the expression of a surface antigen of the mouse sperm tail. Biol. Reprod. 32, 669–80.CrossRefGoogle ScholarPubMed
Villaroya, S. & Scholler, R. (1987). Lateral diffusion of human sperm head antigen during incubation in a capacitating medium and induction of the acrosome recation in vitro. J. Reprod. Fertil. 80, 254–62.Google Scholar
Yanagimachi, R. (1988). Mammalian fertilization. In The Physiology of Reproduction, ed. Knobil, E., Neil, J. et al. , pp. 135–85. New York: Raven press.Google Scholar