Skip to main content Accessibility help
×
Home

Article contents

Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation

Published online by Cambridge University Press:  23 May 2017

Peter L. Pfeffer
Affiliation:
School of Biological Science, Victoria University of Wellington, Wellington, New Zealand. Agresearch, Ruakura Campus, 1 Bisley Street, Hamilton, New Zealand.
Craig S. Smith
Affiliation:
Agresearch, Ruakura Campus, 1 Bisley Street, Hamilton, New Zealand. School of Medicine, University of Notre Dame Australia, Sydney, Australia.
Paul Maclean
Affiliation:
Agresearch, Ruakura Campus, 1 Bisley Street, Hamilton, New Zealand.
Debra K. Berg
Affiliation:
Agresearch, Ruakura Campus, 1 Bisley Street, Hamilton, New Zealand.
Corresponding
E-mail address:

Summary

In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Acampora, D., Di Giovannantonio, L.G. & Simeone, A. (2013). Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 140, 4355.CrossRefGoogle ScholarPubMed
Andersson, O., Bertolino, P. & Ibanez, C.F. (2007). Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev. Biol. 311, 500–11.CrossRefGoogle Scholar
Andre, P., Song, H., Kim, W., Kispert, A. & Yang, Y. (2015). Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 142, 1516–27.CrossRefGoogle Scholar
Arnold, S.J. & Robertson, E.J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91103.CrossRefGoogle ScholarPubMed
Arnold, S.J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B.G. & Kemler, R. (2000). Brachyury is a target gene of the Wnt/beta-catenin signalling pathway. Mech. Dev. 91, 249–58.CrossRefGoogle Scholar
Artus, J., Panthier, J.J. & Hadjantonakis, A.K. (2010). A role for PDGF signalling in expansion of the extraembryonic endoderm lineage of the mouse blastocyst. Development 137, 3361–72.CrossRefGoogle Scholar
Ayalon, N. (1978). A review of embryonic mortality in cattle. J. Reprod. Fertil. 54, 483–93.CrossRefGoogle ScholarPubMed
Berg, D.K., Smith, C.S., Pearton, D.J., Wells, D.N., Broadhurst, R., Donnison, M. & Pfeffer, P.L. (2011). Trophectoderm lineage determination in cattle. Dev. Cell. 20, 244–55.CrossRefGoogle ScholarPubMed
Berg, D.K., van Leeuwen, J., Beaumont, S., Berg, M. & Pfeffer, P.L. (2010). Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology 73, 250–60.CrossRefGoogle Scholar
Betteridge, K.J. & Flechon, J.E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29, 155–87.CrossRefGoogle Scholar
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. & Young, R.A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–56.CrossRefGoogle Scholar
Brewer, J.R., Molotkov, A., Mazot, P., Hoch, R.V. & Soriano, P. (2015). Fgfr1 regulates development through the combinatorial use of signalling proteins. Genes Dev. 29, 1863–74.CrossRefGoogle Scholar
Brown, K., Legros, S., Artus, J., Doss, M.X., Khanin, R., Hadjantonakis, A.K. & Foley, A. (2010). A comparative analysis of extraembryonic endoderm cell lines. PLoS One 5, e12016.CrossRefGoogle Scholar
Crossley, P.H. & Martin, G.R. (1995). The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–51.Google ScholarPubMed
Diskin, M.G., Parr, M.H. & Morris, D.G. (2011). Embryo death in cattle: an update. Reprod. Fertil. Dev. 24, 244–51.CrossRefGoogle ScholarPubMed
Dodt, M., Roehr, J.T., Ahmed, R. & Dieterich, C. (2012). FLEXBAR − flexible barcode and adapter processing for next-generation sequencing platforms. Biology (Basel) 1, 895905.Google Scholar
Dunn, S.J., Martello, G., Yordanov, B., Emmott, S. & Smith, A.G. (2014). Defining an essential transcription factor program for naive pluripotency. Science 344, 1156–60.CrossRefGoogle Scholar
Ewen, K.A. & Koopman, P. (2010). Mouse germ cell development: From specification to sex determination. Mol. Cell. Endocrinol. 323, 7693.CrossRefGoogle ScholarPubMed
Familari, M. (2006). Characteristics of the endoderm: embryonic and extraembryonic in mouse. Sci. World J. 6, 1815–27.CrossRefGoogle Scholar
Hart, A.H., Hartley, L., Sourris, K., Stadler, E.S., Li, R., Stanley, E.G., Tam, P.P., Elefanty, A.G. & Robb, L. (2002). Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129, 3597–608.Google ScholarPubMed
Hart, A.H., Willson, T.A., Wong, M., Parker, K. & Robb, L. (2005). Transcriptional regulation of the homeobox gene Mixl1 by TGF-beta and FoxH1. Biochem. Biophys. Res. Commun. 333, 1361–9.CrossRefGoogle ScholarPubMed
Kaufman, M.H. (1995). The Atlas of Mouse Development, Academic Press, London.Google Scholar
Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–60.CrossRefGoogle Scholar
Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R. & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–5.Google Scholar
Lu, C.C., Brennan, J. & Robertson, E.J. (2001). From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev. 11, 384–92.CrossRefGoogle Scholar
Maddox-Hyttel, P., Alexopoulos, N.I., Vajta, G., Lewis, I., Rogers, P., Cann, L., Callesen, H., Tveden-Nyborg, P. & Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–23.CrossRefGoogle ScholarPubMed
Magnúsdóttir, E., Dietmann, S., Murakami, K., Günesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B. & Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat. Cell Biol. 15, 905–15.CrossRefGoogle ScholarPubMed
Magnúsdóttir, E., Gillich, A., Grabole, N. & Surani, M.A. (2012). Combinatorial control of cell fate and reprogramming in the mammalian germline. Curr. Opin. Genet. Dev. 22, 466–74.CrossRefGoogle ScholarPubMed
Mamo, S., Mehta, J.P., McGettigan, P., Fair, T., Spencer, T.E., Bazer, F.W. & Lonergan, P. (2011). RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 85, 1143–51.CrossRefGoogle ScholarPubMed
Maye, P., Becker, S., Siemen, H., Thorne, J., Byrd, N., Carpentino, J. & Grabel, L. (2004). Hedgehog signalling is required for the differentiation of ES cells into neurectoderm. Dev. Biol. 265, 276–90.CrossRefGoogle Scholar
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Method. 5, 621–8.CrossRefGoogle Scholar
Moustakas, A. & Heldin, C.H. (2009). The regulation of TGFbeta signal transduction. Development 136, 3699– 714.CrossRefGoogle ScholarPubMed
Nagatomo, H., Kagawa, S., Kishi, Y., Takuma, T., Sada, A., Yamanaka, K., Abe, Y., Wada, Y., Takahashi, M., Kono, T. & Kawahara, M. (2013). Transcriptional wiring for establishing cell lineage specification at the blastocyst stage in cattle. Biol. Reprod. 88, 158.CrossRefGoogle ScholarPubMed
Niswander, L. & Martin, G.R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–68.Google ScholarPubMed
Ogura, Y., Takakura, N., Yoshida, H. & Nishikawa, S.I. (1998). Essential role of platelet-derived growth factor receptor alpha in the development of the intraplacental yolk sac/sinus of Duval in mouse placenta. Biol. Reprod. 58, 6572.CrossRefGoogle ScholarPubMed
Ornitz, D.M., Xu, J., Colvin, J.S., McEwen, D.G., MacArthur, C.A., Coulier, F., Gao, G. & Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–7.CrossRefGoogle Scholar
Ozawa, M., Sakatani, M., Yao, J., Shanker, S., Yu, F., Yamashita, R., Wakabayashi, S., Nakai, K., Dobbs, K.B., Sudano, M.J., Farmerie, W.G. & Hansen, P.J. (2012). Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev. Biol. 12, 33.CrossRefGoogle Scholar
Pearton, D.J., Smith, C.S., Redgate, E., van Leeuwen, J., Donnison, M. & Pfeffer, P.L. (2014). Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev. Biol. 392, 344–57.CrossRefGoogle Scholar
Pfeffer, P.L. (2014). Lineage commitment in the mammalian preimplantation embryo. In Reproduction in Domestic Ruminants vol. 8 (eds Juengel, J., Miyamoto, A., & Webb, R.) pp. 89103. Context, Obihiro, Japan.Google Scholar
Pfeffer, P.L. & Pearton, D.J. (2012). Trophoblast development. Reproduction 143, 231–46.CrossRefGoogle ScholarPubMed
Phillips, N.E., Manning, C.S., Pettini, T., Biga, V., Marinopoulou, E., Stanley, P., Boyd, J., Bagnall, J., Paszek, P., Spiller, D.G., White, M.R.H., Goodfellow, M., Galla, T., Rattray, M. & Papalopulu, N. (2016). Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation. eLife 5, e16118.CrossRefGoogle Scholar
R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google ScholarPubMed
Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Moss, J., Graham, L., Burton, N., Hill, B., Rao, J., Baldock, R.A. & Armit, C. (2014). EMAGE mouse embryo spatial gene expression database: 2014 update. Nucl. Acid Res. 42, D835–44.CrossRefGoogle ScholarPubMed
Rielland, M., Hue, I., Renard, J.P. & Alice, J. (2008). Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev. Biol. 322, 110.CrossRefGoogle ScholarPubMed
Roberts, R.M. & Fisher, S.J. (2011). Trophoblast stem cells. Biol. Reprod. 84, 412–21.CrossRefGoogle ScholarPubMed
Robertson, E.J. (2014). Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell. Dev. Biol. 32, 73–9.CrossRefGoogle ScholarPubMed
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–40.CrossRefGoogle Scholar
Sartori, R., Bastos, M.R. & Wiltbank, M.C. (2010). Factors affecting fertilization and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22, 151–8.CrossRefGoogle ScholarPubMed
Smith, C., Berg, D., Beaumont, S., Standley, N.T., Wells, D.N. & Pfeffer, P.L. (2007). Simultaneous gene quantitation of multiple genes in individual bovine nuclear transfer blastocysts. Reproduction 133, 231–42.CrossRefGoogle Scholar
Smith, C.S., Berg, D.K., Berg, M. & Pfeffer, P.L. (2010). Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle. Cell Reprogram. 12, 699707.CrossRefGoogle Scholar
Sun, X., Meyers, E.N., Lewandoski, M. & Martin, G.R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–46.CrossRefGoogle ScholarPubMed
Tagashira, S., Harada, H., Katsumata, T., Itoh, N. & Nakatsuka, M. (1997). Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing. Gene 197, 399404.CrossRefGoogle ScholarPubMed
Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–5.CrossRefGoogle ScholarPubMed
Taniguchi, F., Harada, T., Yoshida, S., Iwabe, T., Onohara, Y., Tanikawa, M. & Terakawa, N. (1998). Paracrine effects of bFGF and KGF on the process of mouse blastocyst implantation. Mol. Reprod. Dev. 50, 5462.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Trapnell, C., Pachter, L. & Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–11.CrossRefGoogle ScholarPubMed
Tsubooka, N., Ichisaka, T., Okita, K., Takahashi, K., Nakagawa, M. & Yamanaka, S. (2009). Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells 14, 683–94.CrossRefGoogle Scholar
van Leeuwen, J., Berg, D.K. & Pfeffer, P.L. (2015). Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One 10, e0129787.CrossRefGoogle ScholarPubMed
Vejlsted, M., Du, Y., Vajta, G. & Maddox-Hyttel, P. (2006). Post-hatching development of the porcine and bovine embryo—defining criteria for expected development in vivo and in vitro . Theriogenology 65, 153–65.CrossRefGoogle ScholarPubMed
Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R.E. & Stern, C.D. (2007). The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–52.CrossRefGoogle ScholarPubMed
Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. (2012). Distinct lineage specification roles for NANOG, OCT 4, and SOX2 in human embryonic stem cells. Cell. Stem Cell 10, 440–54.CrossRefGoogle Scholar
Wooding, F.B. (1992). Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13, 101–13.CrossRefGoogle Scholar
Wordinger, R.J., Smith, K.J., Bell, C. & Chang, I.F. (1994). The immunolocalization of basic fibroblast growth factor in the mouse uterus during the initial stages of embryo implantation. Growth Factors 11, 175–86.CrossRefGoogle Scholar
Yamaji, M., Seki, Y., Kurimoto, K., Yabuta, Y., Yuasa, M., Shigeta, M., Yamanaka, K., Ohinata, Y. & Saitou, M. (2008). Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–22.CrossRefGoogle ScholarPubMed
Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., Lancet, D. & Shmueli, O. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–9.CrossRefGoogle ScholarPubMed
Youngren, K.K., Coveney, D., Peng, X., Bhattacharya, C., Schmidt, L.S., Nickerson, M.L., Lamb, B.T., Deng, J.M., Behringer, R.R., Capel, B., Rubin, E.M., Nadeau, J.H. & Matin, A. (2005). The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435, 360–4.CrossRefGoogle ScholarPubMed
Zhang, H. & Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–86.Google Scholar

Pfeffer supplementary material

Table S1

File 2 MB

Pfeffer supplementary material

Figure S1

PDF 7 MB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 54
Total number of PDF views: 239 *
View data table for this chart

* Views captured on Cambridge Core between 23rd May 2017 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kfxvk Total loading time: 0.413 Render date: 2021-01-19T16:25:03.925Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *