Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T13:21:14.945Z Has data issue: false hasContentIssue false

Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk

Published online by Cambridge University Press:  06 July 2023

Romualdo Sciorio*
Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, UK
Gerard Campos
GIREXX Fertility Clinics, Girona-Barcelona, Spain
Luca Tramontano
Department of Women, Infants and Adolescents, Division of Obstetrics, Geneve University Hospitals, Boulevard de la Cluse 30, Geneve 14, Switzerland
Francesco M. Bulletti
Department Obstetrics and Gynecology, University Hospital of Vaud, Lausanne, Switzerland
Giorgio M. Baldini
IVF Center, Momo Fertilife, 76011 Bisceglie, Italy
Marina Vinciguerra
Department of Biomedical Sciences and Human Oncology, Obstetrics and Gynaecology Section, University of Bari, Italy Clinic of Obstetrics and Gynecology ‘Santa Caterina Novella’, Galatina Hospital, Italy
Corresponding author: Romualdo Sciorio; Email:


Since the birth of the first baby by in vitro fertilization in 1978, more than 9 million children have been born worldwide using medically assisted reproductive treatments. Fertilization naturally takes place in the maternal oviduct where unique physiological conditions enable the early healthy development of the embryo. During this dynamic period of early development major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Increasingly, over the past 20 years concerns relating to the increased incidence of epigenetic anomalies in general, and genomic-imprinting disorders in particular, have been raised following assisted reproduction technology (ART) treatments. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period and non-physiological conditions such as ovarian stimulation, in vitro fertilization and embryo culture, as well as cryopreservation procedure, might have the potential to independently or collectively contribute to epigenetic dysregulation. Therefore, this narrative review offers a critical reappraisal of the evidence relating to the association between embryo cryopreservation and potential epigenetic regulation and the consequences on gene expression together with long-term consequences for offspring health and wellbeing. Current literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, in terms of osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, it is therefore, critical to have a more comprehensive understanding and recognition of potential unanticipated iatrogenic-induced perturbations of epigenetic modifications that may or may not be a consequence of vitrification.

Review Article
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adams, D. H., Clark, R. A., Davies, M. J. and De Lacey, S. (2016). A meta-analysis of neonatal health outcomes from oocyte donation. Journal of Developmental Origins of Health and Disease, 7(3), 257272. doi: 10.1017/S2040174415007898 CrossRefGoogle ScholarPubMed
Ainsworth, A. J., Wyatt, M. A., Shenoy, C. C., Hathcock, M. and Coddington, C. C. (2019). Fresh versus frozen embryo transfer has no effect on childhood weight. Fertility and Sterility, 112(4), 684690.e1. doi: 10.1016/j.fertnstert.2019.05.020 CrossRefGoogle ScholarPubMed
Albertini, D. F. and Olsen, R. (2013). Effects of fertility preservation on oocyte genomic integrity. Advances in Experimental Medicine and Biology, 761, 1927. doi: 10.1007/978-1-4614-8214-7_3 CrossRefGoogle ScholarPubMed
Al-Khtib, M., Perret, A., Khoueiry, R., Ibala-Romdhane, S., Blachère, T., Greze, C., Lornage, J. and Lefèvre, A. (2011). Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro . Fertility and Sterility, 95(6), 19551960. doi: 10.1016/j.fertnstert.2011.02.029 CrossRefGoogle Scholar
Azzi, S., Abi Habib, W. and Netchine, I. (2014). Beckwith–Wiedemann and Russell-Silver syndromes: From new molecular insights to the comprehension of imprinting regulation. Current Opinion in Endocrinology, Diabetes, and Obesity, 21(1), 3038. doi: 10.1097/MED.0000000000000037 CrossRefGoogle Scholar
Bannister, A. J. and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381395. doi: 10.1038/cr.2011.22 CrossRefGoogle ScholarPubMed
Barberet, J., Barry, F., Choux, C., Guilleman, M., Karoui, S., Simonot, R., Bruno, C. and Fauque, P. (2020). What impact does oocyte vitrification have on epigenetics and gene expression? Clinical Epigenetics, 12(1), 121. doi: 10.1186/s13148-020-00911-8, PubMed: 32778156, PubMed Central: PMC7418205CrossRefGoogle ScholarPubMed
Barberet, J., Romain, G., Binquet, C., Guilleman, M., Bruno, C., Ginod, P., Chapusot, C., Choux, C. and Fauque, P. (2021). Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertility and Sterility, 116(6), 14681480. doi: 10.1016/j.fertnstert.2021.08.014 CrossRefGoogle ScholarPubMed
Bassermann, F., Eichner, R. and Pagano, M. (2014). The ubiquitin proteasome system — Implications for cell cycle control and the targeted treatment of cancer. Biochimica et Biophysica Acta, 1843(1), 150162. doi: 10.1016/j.bbamcr.2013.02.028 CrossRefGoogle ScholarPubMed
Belva, F., Bonduelle, M., Roelants, M., Verheyen, G. and Van Landuyt, L. (2016). Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Human Reproduction, 31(7), 16101620. doi: 10.1093/humrep/dew103 CrossRefGoogle ScholarPubMed
Best, B. P. (2015). Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Research, 18(5), 422436. doi: 10.1089/rej.2014.1656 CrossRefGoogle ScholarPubMed
Bouillon, C., Léandri, R., Desch, L., Ernst, A., Bruno, C., Cerf, C., Chiron, A., Souchay, C., Burguet, A., Jimenez, C., Sagot, P. and Fauque, P. (2016, March 23). Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLOS ONE, 11(3), e0150857. doi: 10.1371/journal.pone.0150857 CrossRefGoogle ScholarPubMed
Bouquet, M., Selva, J. and Auroux, M. (1993). Cryopreservation of mouse oocytes: Mutagenic effects in the embryo? Biology of Reproduction, 49(4), 764769. doi: 10.1095/biolreprod49.4.764 CrossRefGoogle ScholarPubMed
Bousfield, G. R. and Harvey, D. J. (2019). Follicle-stimulating hormone glycobiology. Endocrinology, 160(6), 15151535. doi: 10.1210/en.2019-00001 CrossRefGoogle ScholarPubMed
Cantatore, C., George, J. S., Depalo, R., D’Amato, G., Moravek, M. and Smith, G. D. (2021, August). Mouse oocyte vitrification with and without dimethyl sulfoxide: Influence on cryo-survival, development, and maternal imprinted gene expression. Journal of Assisted Reproduction and Genetics, 38(8), 21292138. doi: 10.1007/s10815-021-02221-1, PubMed: 34021463CrossRefGoogle ScholarPubMed
Cassidy, S. B., Schwartz, S., Miller, J. L. and Driscoll, D. J. (2012). Prader–Willi syndrome. Genetics in Medicine, 14(1), 1026. doi: 10.1038/gim.0b013e31822bead0 CrossRefGoogle ScholarPubMed
Chen, C. (1986). Pregnancy after human oocyte cryopreservation. Lancet, 1(8486), 884886. doi: 10.1016/s0140-6736(86)90989-x CrossRefGoogle ScholarPubMed
Chen, H., Zhang, L., Deng, T., Zou, P., Wang, Y., Quan, F. and Zhang, Y. (2016). Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology, 86(3), 868878. doi: 10.1016/j.theriogenology.2016.03.008 CrossRefGoogle ScholarPubMed
Chen, H., Zhang, L., Wang, Z., Chang, H., Xie, X., Fu, L., Zhang, Y. and Quan, F. (2019). Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Molecular Reproduction and Development, 86(7), 862870. doi: 10.1002/mrd.23161 CrossRefGoogle ScholarPubMed
Cheng, K. R., Fu, X. W., Zhang, R. N., Jia, G. X., Hou, Y. P. and Zhu, S. E. (2014). Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertility and Sterility, 102(4), 1183e1190. doi: 10.1016/j.fertnstert.2014.06.037 CrossRefGoogle ScholarPubMed
Christou-Kent, M., Dhellemmes, M., Lambert, E., Ray, P. F. and Arnoult, C. (2020, March 9). Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells, 9(3), 662. doi: 10.3390/cells9030662 CrossRefGoogle ScholarPubMed
Coates, A., Kung, A., Mounts, E., Hesla, J., Bankowski, B., Barbieri, E., Ata, B., Cohen, J. and Munné, S. (2017). Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: A randomized controlled trial. Fertility and Sterility, 107(3), 723730.e3. doi: 10.1016/j.fertnstert.2016.12.022 CrossRefGoogle ScholarPubMed
Cobo, A., Meseguer, M., Remohí, J. and Pellicer, A. (2010). Use of cryo-banked oocytes in an ovum donation programme: A prospective, randomized, controlled, clinical trial. Human Reproduction, 25(9), 22392246. doi: 10.1093/humrep/deq146 CrossRefGoogle Scholar
Cobo, A., Garrido, N., Pellicer, A. and Remohí, J. (2015). Six years’ experience in ovum donation using vitrified oocytes: Report of cumulative outcomes, impact of storage time, and development of a predictive model for oocyte survival rate. Fertility and Sterility, 104(6), 1426–34.e1. doi: 10.1016/j.fertnstert.2015.08.020 CrossRefGoogle ScholarPubMed
Cobo, A., García-Velasco, J., Domingo, J., Pellicer, A. and Remohí, J. (2018). Elective and onco-fertility preservation: Factors related to IVF outcomes. Human Reproduction, 33(12), 22222231. doi: 10.1093/humrep/dey321 CrossRefGoogle ScholarPubMed
Cui, M., Dong, X., Lyu, S., Zheng, Y. and Ai, J. (2021). The impact of embryo storage time on pregnancy and perinatal outcomes and the time limit of vitrification: A retrospective cohort study. Frontiers in Endocrinology (Lausanne), 12, 724853. doi: 10.3389/fendo.2021.724853 CrossRefGoogle ScholarPubMed
Dal Canto, M., Guglielmo, M. C., Mignini Renzini, M., Fadini, R., Moutier, C., Merola, M., De Ponti, E. and Coticchio, G. (2017). Dysmorphic patterns are associated with cytoskeletal alterations in human oocytes. Human Reproduction, 32(4), 750757. doi: 10.1093/humrep/dex041 Google ScholarPubMed
Das, R., Lee, Y. K., Strogantsev, R., Jin, S., Lim, Y. C., Ng, P. Y., Lin, X. M., Chng, K., Yeo, G. Sh., Ferguson-Smith, A. C. and Ding, C. (2013, October 5). DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics, 14, 685. doi: 10.1186/1471-2164-14-685 CrossRefGoogle ScholarPubMed
Davies, M. J., Moore, V. M., Willson, K. J., Van Essen, P., Priest, K., Scott, H., Haan, E. A. and Chan, A. (2012). Reproductive technologies and the risk of birth defects. New England Journal of Medicine, 366(19), 18031813. doi: 10.1056/NEJMoa1008095 CrossRefGoogle ScholarPubMed
De Geyter, C. H., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., Scaravelli, G., Smeenk, J., Vidakovic, S., Goossens, V. and European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) (2020). ART in Europe, 2015: Results generated from European registries by ESHRE. Human Reproduction Open, 2020(1), hoz038. doi: 10.1093/hropen/hoz038 CrossRefGoogle ScholarPubMed
De Munck, N., Petrussa, L., Verheyen, G., Staessen, C., Vandeskelde, Y., Sterckx, J., Bocken, G., Jacobs, K., Stoop, D., De Rycke, M. and Van de Velde, H. (2015). Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification. Molecular Human Reproduction, 21(6), 535544. doi: 10.1093/molehr/gav013 CrossRefGoogle ScholarPubMed
DeBaun, M. R., Niemitz, E. L. and Feinberg, A. P. (2003). Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics, 72(1), 156160. doi: 10.1086/346031 CrossRefGoogle ScholarPubMed
Debrock, S., Peeraer, K., Fernandez Gallardo, E., De Neubourg, D., Spiessens, C. and D’Hooghe, T. M. (2015, August). Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: A RCT. Human Reproduction, 30(8), 18201830. doi: 10.1093/humrep/dev134 CrossRefGoogle ScholarPubMed
Diaferia, G. R., Dessì, S. S., DeBlasio, P. and Biunno, I. (2008). Is stem cell chromosomes stability affected by cryopreservation conditions? Cytotechnology, 58(1), 1116. doi: 10.1007/s10616-008-9163-y CrossRefGoogle ScholarPubMed
Donjacour, A., Liu, X., Lin, W., Simbulan, R. and Rinaudo, P. F. (2014). In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biology of Reproduction, 90(4), 80. doi: 10.1095/biolreprod.113.113134 CrossRefGoogle Scholar
Eggermann, T., Perez de Nanclares, G., Maher, E. R., Temple, I. K., Tümer, Z., Monk, D., Mackay, D. J., Grønskov, K., Riccio, A., Linglart, A. and Netchine, I. (2015). Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clinical Epigenetics, 7, 123. doi: 10.1186/s13148-015-0143-8 CrossRefGoogle ScholarPubMed
Estill, M. S., Bolnick, J. M., Waterland, R. A., Bolnick, A. D., Diamond, M. P. and Krawetz, S. A. (2016, September 1). Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertility and Sterility, 106(3), 629639.e10. doi: 10.1016/j.fertnstert.2016.05.006 CrossRefGoogle ScholarPubMed
Estudillo, E., Jiménez, A., Bustamante-Nieves, P. E., Palacios-Reyes, C., Velasco, I. and López-Ornelas, A. (2021, October 8). Cryopreservation of gametes and embryos and their molecular changes. International Journal of Molecular Sciences, 22(19), 10864. doi: 10.3390/ijms221910864 CrossRefGoogle ScholarPubMed
European IVF Monitoring Consortium (EIM), for the European Society of Human Reproduction and Embryology (ESHRE), Wyns, C., De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Motrenko, T., Smeenk, J., Bergh, C., Tandler-Schneider, A., Rugescu, I. A. and Goossens, V. (2022). ART in Europe, 2018: Results generated from European registries by ESHRE. Human Reproduction Open, 2022(3), hoac022. doi: 10.1093/hropen/hoac022 CrossRefGoogle Scholar
Fahy, G. M., MacFarlane, D. R., Angell, C. A. and Meryman, H. T. (1984). Vitrification as an approach to cryopreservation. Cryobiology, 21(4), 407426. doi: 10.1016/0011-2240(84)90079-8 CrossRefGoogle ScholarPubMed
Faulk, C. and Dolinoy, D. C. (2011). Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics, 6(7), 791797. doi: 10.4161/epi.6.7.16209 CrossRefGoogle ScholarPubMed
Feitosa, W. B., Hwang, K. and Morris, P. L. (2018). Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Developmental Biology, 434(2), 278291. doi: 10.1016/j.ydbio.2017.12.011 CrossRefGoogle Scholar
Feuer, S. and Rinaudo, P. (2012, December). Preimplantation stress and development. Birth Defects Research. Part C, Embryo Today: Reviews, 96(4), 299314. doi: 10.1002/bdrc.21022 CrossRefGoogle ScholarPubMed
Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., Barker, M., Saffery, R., Yajnik, C. S., Eckert, J. J., Hanson, M. A., Forrester, T., Gluckman, P. D. and Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: Causes and consequences. Lancet, 391(10132), 18421852. doi: 10.1016/S0140-6736(18)30312-X CrossRefGoogle ScholarPubMed
Fuller, B. J. (2004). Cryoprotectants: The essential antifreezes to protect life in the frozen state. Cryo Letters, 25(6), 375388.Google ScholarPubMed
Gallinari, P., Di Marco, S., Jones, P., Pallaoro, M. and Steinkühler, C. (2007). HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Research, 17(3), 195211. doi: 10.1038/ CrossRefGoogle ScholarPubMed
Gicquel, C., Gaston, V., Mandelbaum, J., Siffroi, J. P., Flahault, A. and Le Bouc, Y. (2003). In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. American Journal of Human Genetics, 72(5), 13381341. doi: 10.1086/374824 CrossRefGoogle Scholar
Gilmore, J. A., Liu, J., Gao, D. Y. and Critser, J. K. (1997). Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Human Reproduction, 12(1), 112118. doi: 10.1093/humrep/12.1.112 CrossRefGoogle ScholarPubMed
Glaser, R. L., Ramsay, J. P. and Morison, I. M. (2006, January 1). The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Research, 34(Database issue), D29D31. doi: 10.1093/nar/gkj101 CrossRefGoogle ScholarPubMed
Goldberg, A. D., Allis, C. D. and Bernstein, E. (2007, February 23). Epigenetics: A landscape takes shape. Cell, 128(4), 635638. doi: 10.1016/j.cell.2007.02.006 CrossRefGoogle ScholarPubMed
Gook, D. A., Osborn, S. M. and Johnston, W. I. (1995). Parthenogenetic activation of human oocytes following cryopreservation using 1,2-propanediol. Human Reproduction, 10(3), 654658. doi: 10.1093/oxfordjournals.humrep.a136005 CrossRefGoogle ScholarPubMed
Groenewoud, E. R., Cohlen, B. J. and Macklon, N. S. (2018). Programming the endometrium for deferred transfer of cryopreserved embryos: Hormone replacement versus modified natural cycles. Fertility and Sterility, 109(5), 768774. doi: 10.1016/j.fertnstert.2018.02.135 CrossRefGoogle ScholarPubMed
Gualtieri, R., Iaccarino, M., Mollo, V., Prisco, M., Iaccarino, S. and Talevi, R. (2009). Slow cooling of human oocytes: Ultrastructural injuries and apoptotic status. Fertility and Sterility, 91(4), 10231034. doi: 10.1016/j.fertnstert.2008.01.076 CrossRefGoogle ScholarPubMed
Gujar, H., Weisenberger, D. J. and Liang, G. (2019, February 23). The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes, 10(2):172, 30813436. doi: 10.3390/genes10020172.PMID CrossRefGoogle ScholarPubMed
Halliday, J., Oke, K., Breheny, S., Algar, E. and Amor, J, , D. J. (2004). Beckwith–Wiedemann syndrome and IVF: A case–control study. American Journal of Human Genetics, 75(3), 526528. doi: 10.1086/423902 CrossRefGoogle ScholarPubMed
Hart, R. and Norman, R. J. (2013). The longer-term health outcomes for children born as a result of IVF treatment: part I—general health outcomes. Human Reproduction Update, 19(3), 232243. doi: 10.1093/humupd/dms062 CrossRefGoogle ScholarPubMed
Hirasawa, R. and Feil, R. (2010). Genomic imprinting and human disease. Essays in Biochemistry, 48(1), 187200. doi: 10.1042/bse0480187 Google ScholarPubMed
Hiura, H., Okae, H., Chiba, H., Miyauchi, N., Sato, F., Sato, A. and Arima, T. (2014). Imprinting methylation errors in ART. Reproductive Medicine and Biology, 13(4), 193202. doi: 10.1007/s12522-014-0183-3 CrossRefGoogle ScholarPubMed
Hiura, H., Hattori, H., Kobayashi, N., Okae, H., Chiba, H., Miyauchi, N., Kitamura, A., Kikuchi, H., Yoshida, H. and Arima, T. (2017). Genome-wide microRNA expression profiling in placentae from frozen–thawed blastocyst transfer. Clinical Epigenetics, 9, 79. doi: 10.1186/s13148-017-0379-6 CrossRefGoogle ScholarPubMed
Hubel, A., Spindler, R. and Skubitz, A. P. N. (2014). Storage of human biospecimens: Selection of the optimal storage temperature. Biopreservation and Biobanking, 12(3), 165175. doi: 10.1089/bio.2013.0084 CrossRefGoogle ScholarPubMed
Hunt, C. J. (2011). Cryopreservation of human stem cells for clinical application: A review. Transfusion Medicine and Hemotherapy, 38(2), 107123. doi: 10.1159/000326623 CrossRefGoogle ScholarPubMed
Huo, Y., Yuan, P., Qin, Q., Yan, Z., Yan, L., Liu, P., Li, R., Yan, J. and Qiao, J. (2021). Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes. Frontiers of Medicine, 15(1), 144154. doi: 10.1007/s11684-020-0792-7 CrossRefGoogle ScholarPubMed
Hwang, S. S., Dukhovny, D., Gopal, D., Cabral, H., Diop, H., Coddington, C. C. and Stern, J. E. (2019). Health outcomes for Massachusetts infants after fresh versus frozen embryo transferr. Fertility and Sterility, 112(5), 900907. doi: 10.1016/j.fertnstert.2019.07.010 CrossRefGoogle Scholar
Iwatani, M., Ikegami, K., Kremenska, Y., Hattori, N., Tanaka, S., Yagi, S. and Shiota, K. (2006, November). Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells, 24(11), 25492556. doi: 10.1634/stemcells.2005-0427 CrossRefGoogle ScholarPubMed
Jahangiri, M., Shahhoseini, M. and Movaghar, B. (2014). H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reproductive Biomedicine Online, 29(5), 559566. doi: 10.1016/j.rbmo.2014.07.006 CrossRefGoogle ScholarPubMed
Jones, A., Van Blerkom, J., Davis, P. and Toledo, A. A. (2004). Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: Implications for developmental competence. Human Reproduction, 19(8), 18611866. doi: 10.1093/humrep/deh313 CrossRefGoogle ScholarPubMed
Kader, A., Agarwal, A., Abdelrazik, H., Sharma, R. K., Ahmady, A. and Falcone, T. (2009). Evaluation of post-thaw DNA integrity of mouse blastocysts after ultrarapid and slow freezing. Fertility and Sterility, 91(5) Suppl., 20872094. doi: 10.1016/j.fertnstert.2008.04.049 CrossRefGoogle ScholarPubMed
Kalish, J. M., Jiang, C. and Bartolomei, M. S. (2014). Epigenetics and imprinting in human disease. International Journal of Developmental Biology, 58(2–4), 291298. doi: 10.1387/ijdb.140077mb CrossRefGoogle ScholarPubMed
Kaneko-Ishino, T. and Ishino, F. (2022). The evolutionary advantage in mammals of the complementary monoallelic expression mechanism of genomic imprinting and its emergence from a defense against the insertion into the host genome. Frontiers in Genetics, 13, 832983. doi: 10.3389/fgene.2022.832983 CrossRefGoogle ScholarPubMed
Karlsson, J. O. and Toner, M. (1996). Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials, 17(3), 243256. doi: 10.1016/0142-9612(96)85562-1 CrossRefGoogle ScholarPubMed
Katkov, I. I., Kim, M. S., Bajpai, R., Altman, Y. S., Mercola, M., Loring, J. F., Terskikh, A. V., Snyder, E. Y. and Levine, F. (2006). Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology, 53(2), 194205. doi: 10.1016/j.cryobiol.2006.05.005 CrossRefGoogle ScholarPubMed
Klose, R. J. and Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31(2), 8997. doi: 10.1016/j.tibs.2005.12.008 CrossRefGoogle ScholarPubMed
Kohaya, N., Fujiwara, K., Ito, J. and Kashiwazaki, N. (2013). Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLOS ONE, 8(3), e58063. doi: 10.1371/journal.pone.0058063 CrossRefGoogle ScholarPubMed
Kopeika, J., Thornhill, A. and Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update, 21(2), 209227. doi: 10.1093/humupd/dmu063 CrossRefGoogle ScholarPubMed
Kuwayama, M., Vajta, G., Kato, O. and Leibo, S. P. (2005, September). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive Biomedicine Online, 11(3), 300308. doi: 10.1016/s1472-6483(10)60837-1 CrossRefGoogle ScholarPubMed
Laprise, S. L. (2009). Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Molecular Reproduction and Development, 76(11), 10061018. doi: 10.1002/mrd.21058 CrossRefGoogle ScholarPubMed
Larman, M. G., Sheehan, C. B. and Gardner, D. K. (2006). Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction, 131(1), 5361. doi: 10.1530/rep.1.00878 CrossRefGoogle ScholarPubMed
Lazaraviciute, G., Kauser, M., Bhattacharya, S., Haggarty, P. and Bhattacharya, S. (2014). A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Human Reproduction Update, 20(6), 840852. doi: 10.1093/humupd/dmu033 CrossRefGoogle ScholarPubMed
Li, X. (2013). Genomic imprinting is a parental effect established in mammalian germ cells. Current Topics in Developmental Biology, 102, 3559. doi: 10.1016/B978-0-12-416024-8.00002-7 CrossRefGoogle ScholarPubMed
Li, Z., Wang, Y. A., Ledger, W., Edgar, D. H. and Sullivan, E. A. (2014). Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: A population-based cohort study. Human Reproduction, 29(12), 27942801. doi: 10.1093/humrep/deu246 CrossRefGoogle ScholarPubMed
Li, M., Feng, C., Gu, X., He, Q. and Wei, F. (2017). Effect of cryopreservation on proliferation and differentiation of periodontal ligament stem cell sheets. Stem Cell Research and Therapy, 8(1), 77. doi: 10.1186/s13287-017-0530-5 CrossRefGoogle ScholarPubMed
Liebermann, J. (2021). Vitrification: A simple and successful method for cryostorage of human blastocysts. Methods in Molecular Biology, 2180, 501515. doi: 10.1007/978-1-0716-0783-1_24 CrossRefGoogle ScholarPubMed
Liu, Y., Lu, C., Yang, Y., Fan, Y., Yang, R., Liu, C. F., Korolev, N. and Nordenskiöld, L. (2011). Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. Journal of Molecular Biology, 414(5), 749764. doi: 10.1016/j.jmb.2011.10.031 CrossRefGoogle ScholarPubMed
Liu, M. H., Zhou, W. H., Chu, D. P., Fu, L., Sha, W. and Li, Y. (2017). Ultrastructural changes and methylation of human oocytes vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecologic and Obstetric Investigation, 82(3), 252261. doi: 10.1159/000448143 CrossRefGoogle ScholarPubMed
Ma, Y., Ma, Y., Wen, L., Lei, H., Chen, S. and Wang, X. (2019). Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified eight-cell embryos. Molecular Reproduction and Development, 86(4), 404415. doi: 10.1002/mrd.23118 CrossRefGoogle ScholarPubMed
Ma, Y., Long, C., Liu, G., Bai, H., Ma, L., Bai, T., Zuo, Y. and Li, S. (2022). WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification. Theriogenology, 177, 1121. doi: 10.1016/j.theriogenology.2021.09.032 CrossRefGoogle ScholarPubMed
Mabb, A. M., Judson, M. C., Zylka, M. J. and Philpot, B. D. (2011). Angelman syndrome: Insights into genomic imprinting and neurodevelopmental phenotypes. Trends in Neurosciences, 34(6), 293303. doi: 10.1016/j.tins.2011.04.001 CrossRefGoogle ScholarPubMed
Maheshwari, A., Raja, E. A. and Bhattacharya, S. (2016). Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: An analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertility and Sterility, 106(7), 17031708. doi: 10.1016/j.fertnstert.2016.08.047 CrossRefGoogle ScholarPubMed
Maheshwari, A., Pandey, S., Amalraj Raja, E. A., Shetty, A., Hamilton, M. and Bhattacharya, S. (2018). Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Human Reproduction Update, 24(1), 3558. doi: 10.1093/humupd/dmx031 CrossRefGoogle ScholarPubMed
Mak, W., Weaver, J. R. and Bartolomei, M. S. (2010). Is ART changing the epigenetic landscape of imprinting? Animal Reproduction, 7, 168176.Google Scholar
Mann, M. R., Lee, S. S., Doherty, A. S., Verona, R. I., Nolen, L. D., Schultz, R. M. & Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 131(15), 37273735. doi: 10.1242/dev.01241 CrossRefGoogle ScholarPubMed
Manna, C., Barbagallo, F., Sagnella, F., Farrag, A. and Calogero, A. E. (2023, January 7). Assisted reproductive technology without embryo discarding or freezing in women ≥40 years: A 5-year retrospective study at a Single Center in Italy. Journal of Clinical Medicine, 12(2):504, 36675433. Free PMC article. doi: 10.3390/jcm12020504.PMID CrossRefGoogle ScholarPubMed
Marcho, C., Cui, W. and Mager, J. (2015). Epigenetic dynamics during preimplantation development. Reproduction, 150(3), R109R120. doi: 10.1530/REP-15-0180 CrossRefGoogle ScholarPubMed
Marjonen, H., Auvinen, P., Kahila, H., Tšuiko, O., Kõks, S., Tiirats, A., Viltrop, T., Tuuri, T., Söderström-Anttila, V., Suikkari, A. M., Salumets, A., Tiitinen, A. and Kaminen-Ahola, N. (2018, June 18). rs10732516 polymorphism at the IGF2/H19 locus associates with genotype-specific effects on placental DNA methylation and birth weight of newborns conceived by assisted reproductive technology. Clinical Epigenetics, 10, 80. doi: 10.1186/s13148–018–0511–2 CrossRefGoogle ScholarPubMed
Marks, P. A. and Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25(1), 8490. doi: 10.1038/nbt1272 CrossRefGoogle ScholarPubMed
Mazur, P. (1963). Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. Journal of General Physiology, 47(2), 347369. doi: 10.1085/jgp.47.2.347 CrossRefGoogle ScholarPubMed
Montag, M. and van der Ven, H. (2008). Symposium: Innovative techniques in human embryo viability assessment. Oocyte assessment and embryo viability prediction: Birefringence imaging. Reproductive Biomedicine Online; Symposium: Innovative techniques in human embryo viability assessment, 17(4), 454460. doi: 10.1016/s1472-6483(10)60231-3 CrossRefGoogle ScholarPubMed
Monzo, C., Haouzi, D., Roman, K., Assou, S., Dechaud, H. and Hamamah, S. (2012). Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Human Reproduction, 27(7), 21602168. doi: 10.1093/humrep/des153 CrossRefGoogle ScholarPubMed
Movahed, E., Shabani, R., Hosseini, S., Shahidi, S. and Salehi, M. (2020). Interfering effects of in vitro fertilization and vitrification on expression of Gtl2 and Dlk1 in mouse blastocysts. International Journal of Fertility and Sterility, 14(2), 110115. doi: 10.22074/ijfs.2020.5984 Google ScholarPubMed
Mtango, N. R., Latham, K. E. and Sutovsky, P. (2014). Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. In: Sutovsky, P. (ed.), Posttranslational Protein Modifications in the Reproductive System. Advances in Experimental Medicine and Biology. Springer, 759 pp.Google Scholar
Mukaida, T., Wada, S., Takahashi, K., Pedro, P. B., An, T. Z. and Kasai, M. (1998). Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Human Reproduction, 13(1O), 28742879. doi: 10.1093/humrep/13.10.2874 CrossRefGoogle ScholarPubMed
Naccache, P. and Sha’afi, R. I. (1973). Patterns of nonelectrolyte permeability in human red blood cell membrane. Journal of General Physiology, 62(6), 714736. doi: 10.1085/jgp.62.6.714 CrossRefGoogle ScholarPubMed
Pelkonen, S., Koivunen, R., Gissler, M., Nuojua-Huttunen, S., Suikkari, A. M., Hydén-Granskog, C., Martikainen, H., Tiitinen, A. and Hartikainen, A. L. (2010). Perinatal outcome of children born after frozen and fresh embryo transfer: The Finnish cohort study 1995–2006. Human Reproduction, 25(4), 914923. doi: 10.1093/humrep/dep477 CrossRefGoogle ScholarPubMed
Perheentupa, A. and Huhtaniemi, I. (2009, February 5). Aging of the human ovary and testis. Molecular and Cellular Endocrinology, 299(1), 213. doi: 10.1016/j.mce.2008.11.004 CrossRefGoogle ScholarPubMed
Pickering, S. J., Braude, P. R., Johnson, M. H., Cant, A. and Currie, J. (1990). Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertility and Sterility, 54(1), 102108. doi: 10.1016/s0015-0282(16)53644-9 CrossRefGoogle ScholarPubMed
Pinborg, A., Henningsen, A. A., Loft, A., Malchau, S. S., Forman, J. and Andersen, A. N. (2014). Large baby syndrome in singletons born after frozen embryo transfer (FET): Is it due to maternal factors or the cryotechnique? Human Reproduction, 29(3), 618627. doi: 10.1093/humrep/det440 CrossRefGoogle ScholarPubMed
Poikkeus, P., Gissler, M., Unkila-Kallio, L., Hydén-Granskog, C. and Tiitinen, A. (2007). Obstetric and neonatal outcome after single embryo transfer. Human Reproduction, 22(4), 10731079. doi: 10.1093/humrep/del492 CrossRefGoogle ScholarPubMed
Potdar, N., Gelbaya, T. A. and Nardo, L. G. (2014). Oocyte vitrification in the 21st century and post-warming fertility outcomes: A systematic review and meta-analysis. Reproductive Biomedicine Online, 29(2), 159176. doi: 10.1016/j.rbmo.2014.03.024 CrossRefGoogle ScholarPubMed
Rienzi, L., Romano, S., Albricci, L., Maggiulli, R., Capalbo, A., Baroni, E., Colamaria, S., Sapienza, F. and Ubaldi, F. (2010). Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: A prospective randomized sibling-oocyte study. Human Reproduction, 25(1), 6673. doi: 10.1093/humrep/dep346 CrossRefGoogle ScholarPubMed
Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A. R., Kaser, D. J., Ubaldi, F. M., Vanderpoel, S. and Racowsky, C. (2017). Oocyte, embryo and blastocyst cryopreservation in art: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Human Reproduction Update, 23(2), 139155. doi: 10.1093/humupd/dmw038 Google ScholarPubMed
Rienzi, L., Cimadomo, D., Maggiulli, R., Vaiarelli, A., Dusi, L., Buffo, L., Amendola, M. G., Colamaria, S., Giuliani, M., Bruno, G., Stoppa, M. and Ubaldi, F. M. (2020). Definition of a clinical strategy to enhance the efficacy, efficiency and safety of egg donation cycles with imported vitrified oocytes. Human Reproduction, 35(4), 785795. doi: 10.1093/humrep/deaa009 CrossRefGoogle ScholarPubMed
Rivera, C. M. and Ren, B. (2013). Mapping human epigenomes. Cell, 155(1), 3955. doi: 10.1016/j.cell.2013.09.011 CrossRefGoogle ScholarPubMed
Rodriguez, A., Briley, S. M., Patton, B. K., Tripurani, S. K., Rajapakshe, K., Coarfa, C., Rajkovic, A., Andrieux, A., Dejean, A. and Pangas, S. A. (2019). Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development, 146(23), dev176701. doi: 10.1242/dev.176701 CrossRefGoogle ScholarPubMed
Russo, V. E. A., Martienssen, R. A. and Riggs, A. D. (1996). Epigenetic mechanisms of gene regulation. Monograph 32. Cold Spring Harbor Laboratory Press.Google Scholar
Santos, N. C., Figueira-Coelho, J., Martins-Silva, J. and Saldanha, C. (2003). Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochemical Pharmacology, 65(7), 10351041. doi: 10.1016/s0006-2952(03)00002-9 CrossRefGoogle ScholarPubMed
Santos-Ribeiro, S., Polyzos, N. P., Haentjens, P., Smitz, J., Camus, M., Tournaye, H. and Blockeel, C. (2014). Live birth rates after IVF are reduced by both low and high progesterone levels on the day of human chorionic gonadotrophin administration. Human Reproduction, 29(8), 16981705. doi: 10.1093/humrep/deu151 CrossRefGoogle ScholarPubMed
Sauer, M. V. and Kavic, S. M. (2006). Oocyte and embryo donation 2006: Reviewing two decades of innovation and controversy. Reproductive Biomedicine Online, 12(2), 153162. doi: 10.1016/s1472-6483(10)60855-3 CrossRefGoogle ScholarPubMed
Sazonova, A., Källen, K., Thurin-Kjellberg, A., Wennerholm, U. B. and Bergh, C. (2012). Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Human Reproduction, 27(5), 13431350. doi: 10.1093/humrep/des036 CrossRefGoogle ScholarPubMed
Schatten, H. and Sun, Q. Y. (2014). Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. Advances in Experimental Medicine and Biology, 759, 5787. doi: 10.1007/978-1-4939-0817-2_4 CrossRefGoogle ScholarPubMed
Sciorio, R. and Anderson, R. A. (2020). Fertility preservation and preimplantation genetic assessment for women with breast cancer. Cryobiology, 92, 18. doi: 10.1016/j.cryobiol.2019.12.001 CrossRefGoogle ScholarPubMed
Sciorio, R. and El Hajj, N. (2022). Epigenetic risks of medically assisted reproduction. Journal of Clinical Medicine, 11(8), 2151. doi: 10.3390/jcm11082151 CrossRefGoogle ScholarPubMed
Sciorio, R. and Esteves, S. C. (2020). Clinical utility of freeze-all approach in ART treatment: A mini-review. Cryobiology, 92, 914. doi: 10.1016/j.cryobiol.2019.11.041 CrossRefGoogle ScholarPubMed
Sciorio, R. and Esteves, S. C. (2022). Contemporary use of ICSI and epigenetic risks to future generations. Journal of Clinical Medicine, 11(8), 2135. doi: 10.3390/jcm11082135 CrossRefGoogle ScholarPubMed
Sciorio, R., Thong, K. J. and Pickering, S. J. (2018). Single blastocyst transfer (SET) and pregnancy outcome of day 5 and day 6 human blastocysts vitrified using a closed device. Cryobiology, 84, 4045. doi: 10.1016/j.cryobiol.2018.08.004 CrossRefGoogle ScholarPubMed
Sciorio, R., Thong, K. J. and Pickering, S. J. (2019). Increased pregnancy outcome after day 5 versus day 6 transfers of human vitrified-warmed blastocysts. Zygote, 27(5), 279284. doi: 10.1017/S0967199419000273 CrossRefGoogle ScholarPubMed
Sciorio, R., Antonini, E. and Engl, B. (2021). Live birth and clinical outcome of vitrification-warming donor oocyte programme: An experience of a single IVF Unit. Zygote, 29(5), 410416. doi: 10.1017/S0967199421000204 CrossRefGoogle ScholarPubMed
Sciorio, R., Tramontano, L., Rapalini, E., Bellaminutti, S., Bulletti, F. M., D’Amato, A., Manna, C., Palagiano, A., Bulletti, C. and Esteves, S. C. (2023). Risk of genetic and epigenetic alteration in children conceived following ART: Is it time to return to nature whenever possible? Clinical Genetics, 103(2), 133145. doi: 10.1111/cge.14232 CrossRefGoogle ScholarPubMed
Seki, S. and Mazur, P. (2009). The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology, 59(1), 7582. doi: 10.1016/j.cryobiol.2009.04.012 CrossRefGoogle ScholarPubMed
Sendžikaitė, G. and Kelsey, G. (2019). The role and mechanisms of DNA methylation in the oocyte. Essays in Biochemistry, 63(6), 691705. doi: 10.1042/EBC20190043 Google ScholarPubMed
Sermondade, N., Hesters, L., De Mouzon, J., Devaux, A., Epelboin, S., Fauque, P., Gervoise-Boyer, M. J., Labrosse, J., Viot, G., Bergère, M., Devienne, C., Jonveaux, P., Levy, R. and Pessione, F. (2023, April). Fetal growth disorders following medically assisted reproduction: Due to maternal context or techniques? A national French cohort study. Reproductive Biomedicine Online, 46(4), 739749. doi: 10.1016/j.rbmo.2023.01.006 CrossRefGoogle ScholarPubMed
Shafqat, A., Kashir, J., Alsalameh, S., Alkattan, K. and Yaqinuddin, A. (2022, March 4). Fertilization, oocyte activation, calcium release and epigenetic remodelling: Lessons from cancer models. Frontiers in Cell and Developmental Biology, 10, 781953. doi: 10.3389/fcell.2022.781953 CrossRefGoogle ScholarPubMed
Shevell, T., Malone, F. D., Vidaver, J., Porter, T. F., Luthy, D. A., Comstock, C. H., Hankins, G. D., Eddleman, K., Dolan, S., Dugoff, L., Craigo, S., Timor, I. E., Carr, S. R., Wolfe, H. M., Bianchi, D. W. and D’Alton, M. E. (2005). Assisted reproductive technology and pregnancy outcome. Obstetrics and Gynecology, 106(5 Pt. 1), 10391045. doi: 10.1097/01.AOG.0000183593.24583.7c CrossRefGoogle ScholarPubMed
Shi, Y., Sun, Y., Hao, C., Zhang, H., Wei, D., Zhang, Y., Zhu, Y., Deng, X., Qi, X., Li, H., Ma, X., Ren, H., Wang, Y., Zhang, D., Wang, B., Liu, F., Wu, Q., Wang, Z., Bai, H., et al. (2018). Transfer of fresh versus frozen embryos in ovulatory women. New England Journal of Medicine, 378(2), 126136. doi: 10.1056/NEJMoa1705334 CrossRefGoogle ScholarPubMed
Skaar, D. A., Li, Y., Bernal, A. J., Hoyo, C., Murphy, S. K. and Jirtle, R. L. (2012). The human imprintome: Regulatory mechanisms, methods of ascertainment, and roles in disease susceptibility. ILAR Journal, 53(3–4), 341358. doi: 10.1093/ilar.53.3-4.341 CrossRefGoogle ScholarPubMed
Skinner, M. K. (2011). Environmental epigenomics and disease susceptibility. EMBO Reports, 12(7), 620622. doi: 10.1038/embor.2011.125 CrossRefGoogle ScholarPubMed
Smith, G. D. and Silva E Silva, C. A. (2004). Developmental consequences of cryopreservation of mammalian oocytes and embryos. Reproductive Biomedicine Online, 9(2), 171178. doi: 10.1016/s1472-6483(10)62126-8 CrossRefGoogle ScholarPubMed
Smith, Z. D., Chan, M. M., Humm, K. C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K. and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature, 511(7511), 611615. doi: 10.1038/nature13581 CrossRefGoogle ScholarPubMed
Somigliana, E., Viganò, P., Filippi, F., Papaleo, E., Benaglia, L., Candiani, M. and Vercellini, P. (2015). Fertility preservation in women with endometriosis: For all, for some, for none? Human Reproduction, 30(6), 12801286. doi: 10.1093/humrep/dev078 CrossRefGoogle ScholarPubMed
Stearns, V., Schneider, B., Henry, N. L., Hayes, D. F. and Flockhart, D. A. (2006). Breast cancer treatment and ovarian failure: Risk factors and emerging genetic determinants. Nature Reviews. Cancer, 6(11), 886893. doi: 10.1038/nrc1992 CrossRefGoogle ScholarPubMed
Stigliani, S., Moretti, S., Anserini, P., Casciano, I., Venturini, P. L. and Scaruffi, P. (2015). Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Human Reproduction, 30(11), 25192526. doi: 10.1093/humrep/dev232 CrossRefGoogle Scholar
Sullivan, E. A., Wang, Y. A., Hayward, I., Chambers, G. M., Illingworth, P., McBain, J. and Norman, R. J. (2012). Single embryo transfer reduces the risk of perinatal mortality, a population study. Human Reproduction, 27(12), 36093615. doi: 10.1093/humrep/des315 CrossRefGoogle ScholarPubMed
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021, May). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209249. doi: 10.3322/caac.21660.Google ScholarPubMed
Swain, J. E., Ding, J., Brautigan, D. L., Villa-Moruzzi, E. and Smith, G. D. (2007). Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity. Biology of Reproduction, 76(4), 628638. doi: 10.1095/biolreprod.106.055798 CrossRefGoogle ScholarPubMed
Thamban, T., Agarwaal, V. and Khosla, S. (2020). Role of genomic imprinting in mammalian development. Journal of Biosciences, 45, 20. doi: 10.1007/s12038-019-9984-1 CrossRefGoogle ScholarPubMed
Trounson, A. and Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 305(5936), 707709. doi: 10.1038/305707a0 CrossRefGoogle ScholarPubMed
Trounson, A., Leeton, J., Besanko, M., Wood, C. and Conti, A. (1983). Pregnancy established in an infertile patient after transfer of a donated embryo fertilised in vitro . British Medical Journal, 286(6368), 835838. doi: 10.1136/bmj.286.6368.835 CrossRefGoogle Scholar
Van den Abbeel, E., Schneider, U., Liu, J., Agca, Y., Critser, J. K. and Van Steirteghem, A. (2007). Osmotic responses and tolerance limits to changes in external osmolalities, and oolemma permeability characteristics, of human in vitro matured MII oocytes. Human Reproduction, 22(7), 19591972. doi: 10.1093/humrep/dem083 CrossRefGoogle ScholarPubMed
Ventura-Juncá, P., Irarrázaval, I., Rolle, A. J., Gutiérrez, J. I., Moreno, R. D. and Santos, M. J. (2015). In vitro fertilization (IVF) in mammals: Epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biological Research, 48, 68. doi: 10.1186/s40659-015-0059-y CrossRefGoogle ScholarPubMed
Verheijen, M., Lienhard, M., Schrooders, Y., Clayton, O., Nudischer, R., Boerno, S., Timmermann, B., Selevsek, N., Schlapbach, R., Gmuender, H., Gotta, S., Geraedts, J., Herwig, R., Kleinjans, J. and Caiment, F. (2019, March 15). DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro . Scientific Reports, 9(1), 4641. doi: 10.1038/s41598-019-40660-0 CrossRefGoogle ScholarPubMed
Vrooman, L. A. and Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 7284. doi: 10.1016/j.reprotox.2016.07.015 CrossRefGoogle ScholarPubMed
Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 1820. Reprinted in International Journal of Epidemiology (2012), 41(1), 10–13. doi: 10.1093/ije/dyr184.Google Scholar
Wagh, V., Meganathan, K., Jagtap, S., Gaspar, J. A., Winkler, J., Spitkovsky, D., Hescheler, J. and Sachinidis, A. (2011). Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Reviews and Reports, 7(3), 506517. doi: 10.1007/s12015-011-9230-1 CrossRefGoogle ScholarPubMed
Wang, W. H., Meng, L., Hackett, R. J., Oldenbourg, R. and Keefe, D. L. (2002). Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertility and Sterility, 77(6), 12741277. doi: 10.1016/s0015-0282(02)03117-5 CrossRefGoogle ScholarPubMed
Wang, Z., Xu, L. and He, F. (2010). Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertility and Sterility, 93(8), 27292733. doi: 10.1016/j.fertnstert.2010.03.025 CrossRefGoogle ScholarPubMed
Weaver, J. R., Susiarjo, M. and Bartolomei, M. S. (2009). Imprinting and epigenetic changes in the early embryo. Mammalian Genome, 20(9–10), 532543. doi: 10.1007/s00335-009-9225-2 CrossRefGoogle ScholarPubMed
Xu, Q. H. and Xie, W. (2018). Epigenome in early mammalian development: Inheritance, reprogramming and establishment. Trends in Cell Biology, 28(3), 237253. doi: 10.1016/j.tcb.2017.10.008 CrossRefGoogle ScholarPubMed
Xu, X., Cowley, S., Flaim, C. J., James, W., Seymour, L. and Cui, Z. (2010). The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnology Progress, 26(3), 827837. doi: 10.1002/btpr.368 CrossRefGoogle ScholarPubMed
Yan, Y., Zhang, Q., Yang, L., Zhou, W., Ni, T. and Yan, J. (2023). Pregnancy and neonatal outcomes after long-term vitrification of blastocysts among 6,900 patients after their last live birth. Fertility and Sterility, 119(1), 3644. doi: 10.1016/j.fertnstert.2022.10.016 CrossRefGoogle ScholarPubMed
Yao, J. F., Huang, Y. F., Huang, R. F., Lin, S. X., Guo, C. Q., Hua, C. Z., Wu, P. Y., Hu, J. F. and Li, Y. Z. (2020). Effects of vitrification on the imprinted gene Snrpn in neonatal placental tissue. Reproductive and Developmental Medicine, 4(1), 2531. doi: 10.4103/2096-2924.281851 CrossRefGoogle Scholar
Ying, L., Xiang-Wei, F., Jun-Jie, L., Dian-Shuai, Y. and Shi-En, Z. (2014). DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: Effect of oocyte vitrification. Zygote, 2, 138145.Google Scholar
Yu, Z. W. and Quinn, P. J. (1994). Dimethyl sulphoxide: A review of its applications in cell biology. Bioscience Reports, 14(6), 259281. doi: 10.1007/BF01199051 CrossRefGoogle ScholarPubMed
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., Ding, J., Czyz, D., Hu, R., Ye, Z., He, M., Zheng, Y. G., Shuman, H. A., Dai, L., Ren, B., et al. (2019). Metabolic regulation of gene expression by histone lactylation. Nature, 574(7779), 575580. doi: 10.1038/s41586-019-1678-1 CrossRefGoogle ScholarPubMed
Zhao, X. M., Hao, H. S., Du, W. H., Zhao, S. J., Wang, H. Y., Wang, N., Wang, D., Liu, Y., Qin, T. and Zhu, H. B. (2016). Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. Journal of Pineal Research, 60(2), 132141. doi: 10.1111/jpi.12290 CrossRefGoogle ScholarPubMed
Zhao, Y. H., Wang, J. J., Zhang, P. P., Hao, H. S., Pang, Y. W., Wang, H. Y., Du, W. H., Zhao, S. J., Ruan, W. M., Zou, H. Y., Hao, T., Zhu, H. B. and Zhao, X. M. (2020). Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reproduction, Fertility, and Development, 32(7), 676689. doi: 10.1071/RD19234 CrossRefGoogle ScholarPubMed
Zorov, D. B., Juhaszova, M. and Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3), 909950. doi: 10.1152/physrev.00026.2013 CrossRefGoogle ScholarPubMed