Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T17:31:02.664Z Has data issue: false hasContentIssue false

Inhibition of Amitrole-5-C14 Accumulation in Salmonella typhimurium by Purines

Published online by Cambridge University Press:  12 June 2017

J. L. Hilton
Affiliation:
Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland
D. D. Kaufman
Affiliation:
Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland
Get access

Abstract

Amitrole (3-amino-1,2,4-triazole) is absorbed and actively bound to non-physiological sites in Salmonella typhimurium. Accumulation of amitrole is inhibited by purines; but the effect does not seem to explain adenine protection against growth inhibition by amitrole. Guanine, xanthine, and hypoxanthine cannot replace adenine in growth protection but do inhibit accumulation of amitrole in the bacterial cells.

Type
Research Article
Copyright
Copyright © 1967 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ames, B. N., Garry, B., and Herzenberg, L. A. 1960. The genetic control of the enzymes of histidine biosynthesis in Salmonella typhimurium . J. Gen. Microbiol. 22:369378.Google Scholar
2. Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Hass, V. A., and Stepka, W. 1950. The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Amer. Chem. Soc. 72:17101718.Google Scholar
3. Bond, T. J. and Akers, J. 1961. Mechanism of growth inhibition of Escherichia coli by 3-amino-1,2,4–triazole. J. Bacteriol. 81:327328.Google Scholar
4. Carter, M. C. 1965. Studies on the metabolic activity of 3-amino-1,2,4-triazole. Physiol. Plantarum 18:10541058.Google Scholar
5. Casselton, P. J. 1964. Reversal by histidine of the inhibition of Prototheca growth due to 3-amino-1,2,4-triazole. Nature 204:9394.Google Scholar
6. Casselton, P. J. 1966. Further observations on the inhibition of Prototheca zopfii growth by 3-amino-1,2,4-triazole. Physiol. Plantarum 19:411416.Google Scholar
7. Castelfranco, P. and Brown, M. S. 1963. A hypothesis of amitrole action based on its behavior toward free radical generating systems. Weeds 11:116124.Google Scholar
8. Gentile, A. C. and Fredrick, J. F. 1959. Chemical activity of the glucose abduct of 3-amino-1,2,4-triazole. Physiol. Plantarum 12:862867.Google Scholar
9. Hiatt, H. H. 1962. A rapid labeled RNA in rat liver nuclei. J. Mol. Biol. 5:217229.Google Scholar
10. Hilton, J. L., Jansen, L. L., and Hull, H. M. 1963. Mechanisms of herbicide action. Ann. Rev. Plant Physiol. 14:353384.Google Scholar
11. Hilton, J. L., Kearney, P. C., and Ames, B. N. 1965. Mode of action of the herbicide 3-amino-1,2,4-triazole (amitrole): Inhibition of an enzyme of histidine biosynthesis. Arch. Biochem. Biophys. 112:544547.Google Scholar
12. Kirby, K. S. 1962. Ribonucleic acids. II. Improved preparation of rat liver ribonucleic acid. Biochem. Biophys. Acta. 55:545546.Google Scholar
13. Klopotowski, T. and Wiater, A. 1965. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase. Arch. Biochem. Biophys. 112:562566.Google Scholar
14. Margoliash, E., Novogrodsky, A., and Schejter, A. 1960. Irreversible reaction of 3-amino-1,2,4-triazole and related inhibitors. Biochem. J. 74:339350.Google Scholar
15. Moreland, D. C. 1967. Mechanisms of action of herbicides. Ann. Rev. Plant Physiol. 18: (In press).Google Scholar
16. Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., and Britten, R. J. 1957. Studies of Biosynthesis in Escherichia coli . Carnegie Inst. of Washington Publ. 607, 2nd printing, Washington, D.C. 521 p.Google Scholar
17. Weyter, F. W. and Broquist, H. P. 1960. Interference with adenine and histidine metabolism in microorganisms by aminotriazole. Biochem. Biophys. Acta. 40:567569.Google Scholar
18. Williams, A. K., Cox, S. T., and Eagon, R. G. 1965. Conversion of 3-amino-1,2,4-triazole into 3-amino-1,2,4-triazolyl alanine and its incorporation into protein by Escherichia coli . Biochem. Biophys, Res. Commun. 18:250254.Google Scholar
19. Zook, E. G., MacAuthur, M. J., and Toepfer, E. W. 1956. Pantothenic acid in foods. Agr. Handbook No. 97, U. S. Dep. of Agr., Washington, D. C. 23 p.Google Scholar