Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T14:52:39.620Z Has data issue: false hasContentIssue false

Cotton Response to Simulated Drift of Seven Hormonal-Type Herbicides

Published online by Cambridge University Press:  20 January 2017

Molly E. Marple
Affiliation:
Department of Agronomy, Kansas State University, 2004A Throckmorton Hall, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, 2004A Throckmorton Hall, Manhattan, KS 66506
Douglas Shoup
Affiliation:
Department of Agronomy, Kansas State University, 2004A Throckmorton Hall, Manhattan, KS 66506
Dallas E. Peterson
Affiliation:
Department of Agronomy, Kansas State University, 2004A Throckmorton Hall, Manhattan, KS 66506
Mark Claassen
Affiliation:
Department of Agronomy, Kansas State University, 2004A Throckmorton Hall, Manhattan, KS 66506
*
Corresponding author's E-mail: khatib@ksu.edu

Abstract

Field experiments were conducted at Manhattan and Hesston, KS, in 2004, and at Manhattan, KS, in 2005, to evaluate cotton response to seven hormonal-type herbicides. Herbicides 2,4-D amine, 2,4-D ester, clopyralid, picloram, fluroxypyr, triclopyr, and dicamba were each applied at 0, 1/100, 1/200, 1/300, and 1/400 of the herbicide use rates on cotton in the six- to eight-leaf stage. Herbicide use rates were 210 and 280 g ae/ha for fluroxypyr and clopyralid and 561 g ae/ha, for 2,4-D amine, 2,4-D ester, dicamba, picloram, and triclopyr. At 14 d after treatment (DAT), all herbicides caused leaf cupping and epinasty, except triclopyr and clopyralid, which caused severe bleaching and chlorosis. The order of visual injury ratings was 2,4-D ester > 2,4-D amine > picloram > dicamba > fluroxypyr > triclopyr > clopyralid. By 56 DAT, slight injury symptoms were observed on plants treated with all herbicides, except all rates of 2,4-D, from which symptoms were severe. All rates of 2,4-D and the highest rate of picloram caused more than 60% flower abortion. Ranking of fiber yield reduction after herbicide treatment was 2,4-D ester > 2,4-D amine > picloram > fluroxypyr > dicamba > clopyralid > triclopyr. This research demonstrated that cotton is extremely susceptible to simulated drift rates of 2,4-D and picloram, whereas clopyralid and triclopyr caused early injury, with minimal effect on cotton yield.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Claassen, M. M., Stahlman, P. W., Geier, P. W., Regehr, D. L., Duncan, S. R., and Heer, W. F. 2003. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Technol. 17:261265.Google Scholar
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992. Alfalfa (Medicago sativa) response to simulated herbicide spray drift. Weed Technol. 6:956960.Google Scholar
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1993. Wine grape (Vitis vinifera L.) response to simulated herbicide drift. Weed Technol. 7:97102.Google Scholar
Al-Khatib, K. and Peterson, D. E. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 13:264270.Google Scholar
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol. 20:2331.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ PTR Prentice-Hall. 2952.Google Scholar
Duncan, S. R., Fjell, D. L., Peterson, D. E., and Warmann, G. W. 1993. Cotton Production in Kansas. Manhattan, KS Kansas State University Agricultural Experiment Station and Cooperative Extension Service Publication MF-1088.Google Scholar
Everitt, J. D., Keeling, J. W., and Dotray, P. A. 2005. Effects of 2,4-D timings and rates on cotton growth and yield. Proc. South. Weed Conf. 58. http://lubbock.tamu.edu/weeds/pdf/swssabstract205.pdf. Accessed: November 21, 2006.Google Scholar
Hamilton, K. C. and Arle, H. F. 1979. Response of cotton (Gossypium hirsutum) to dicamba. Weed Sci. 27:604607.Google Scholar
Hutchins, R. 1953. 2,4-D herbicides pose threat to cotton and other susceptible crops. Science 118:782783.Google Scholar
Jacoby, P. W., Meadors, C. H., and Clark, L. E. 1990. Effects of triclopyr, clopyralid, and picloram on growth and production of cotton. J. Prod. Agric. 3:297301.CrossRefGoogle Scholar
Lanini, W. T. 2000. Simulated drift of herbicides on grapes, tomatoes, cotton, and sunflower. Proc. Calif. Weed Conf. 52:107110.Google Scholar
[NASS] National Agriculture Statistical Service 2006. Agriculture Chemical Usage (PCU BB). Field Crops 2005. http://usda.mannlib.cornell.edu. Accessed: March 1, 2006.Google Scholar
Rawson, J. E. and Schrodter, G. N. 1981. Preliminary study of the effects of simulated herbicide drift on cotton toxicity, residues. Proc. Aust. Weed Conf. 6:137138.Google Scholar
Regehr, D. L., Peterson, D. E., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2006. Chemical weed control for field crops, pastures, rangeland, and noncropland. Manhattan, KS Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress SRP 958.Google Scholar
Regier, C., Dilbeck, R. E., Undersander, D. J., and Quisenberry, J. E. 1986. Cotton resistance to 2,4-Dichlorophenoxy acetic acid spray drift. Crop Sci. 26:376377.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004a. Determining exposure to auxin-like herbicides, I: quantifying injury to cotton and soybean. Weed Technol. 18:11251134.CrossRefGoogle Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004b. Determining exposure to auxin-like herbicides, I: practical application to quantify volatility. Weed Technol. 18:11351142.Google Scholar
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5:493498.Google Scholar
Staten, G. 1946. Contamination of cotton fields by 2,4-D or hormone type weed sprays. Agron. J. 38:536544.Google Scholar
[USDA] U.S. Department of Agriculture 2006. Agricultural Marketing Service. Cotton Program. http://www.ams.usda.gov/cotton/pdf%20forms/HVIguidejuly2001.pdf. Accessed: May 22, 2006.Google Scholar
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci. 4:215231.Google Scholar
York, A. C., Culpepper, A. S., and Stewart, A. M. 2004. Response of strip-tilled cotton to preplant applications of dicamba and 2,4-D. J. Cotton Sci. 8:213222.Google Scholar