Skip to main content Accessibility help
×
Home

Glyphosate-resistant Corn Interference in Glyphosate-resistant Cotton

Published online by Cambridge University Press:  20 January 2017

Walter E. Thomas
Affiliation:
North Carolina State University, Box 7620 Raleigh, NC 27695-7620
Wesley J. Everman
Affiliation:
North Carolina State University, Box 7620 Raleigh, NC 27695-7620
Scott B. Clewis
Affiliation:
North Carolina State University, Box 7620 Raleigh, NC 27695-7620
John W. Wilcut
Affiliation:
North Carolina State University, Box 7620 Raleigh, NC 27695-7620
Corresponding
E-mail address:

Abstract

Studies were conducted at three locations in North Carolina in 2004 to evaluate density-dependent effects of glyphosate-resistant (GR) corn on GR cotton growth and lint yield. GR corn was taller than GR cotton as early as 25 d after planting, depending on location. A GR corn density of 5.25 plant/m of crop row reduced late season cotton height by 49, 24, and 28% at Clayton, Lewiston–Woodville, and Rocky Mount, respectively, compared to weed-free cotton height. At Clayton, GR corn dry biomass per m crop row and GR corn seed biomass per m of crop row decreased linearly with increasing corn density. The relationship between GR corn and GR cotton yield loss was described by the rectangular hyperbola model with the asymptote (a) constrained to 100% maximum yield loss. The estimated coefficient i (yield loss per unit density as density approaches zero) was 9, 5, and 5 at Clayton, Lewiston–Woodville, and Rocky Mount, respectively. The examined GR corn densities had a significant effect on cotton yield, but not as significant as many other problematic grass and broadleaf weeds.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anonymous, , 2005. Roundup WeatherMAX label. St. Louis, MO Monsanto Co.Google Scholar
Askew, S. D. and Wilcut, J. W. 2001. Tropic croton interference in cotton. Weed Sci. 49:184189.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 2002a. Ladysthumb interference and seed production in cotton. Weed Sci. 50:326332.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 2002b. Pennsylvania smartweed interference and achene production in cotton. Weed Sci. 50:350356.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 2002c. Pale smartweed interference and achene production in cotton. Weed Sci. 50:357363.CrossRefGoogle Scholar
Bailey, W. A., Askew, S. D., Dorai-Raj, S., and Wilcut, J. W. 2003. Velvetleaf (Abutilon theophrasti) interference and seed production dynamics in cotton. Weed Sci. 51:94101.CrossRefGoogle Scholar
Bridges, D. C. and Chandler, J. M. 1987. Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci. 35:6367.Google Scholar
Brown, S. M., Whitwell, T., and Street, J. E. 1985. Common bermudagrass (Cynodon dactylon) competition in cotton (Gossypium hirsutum). Weed Sci. 33:503506.CrossRefGoogle Scholar
Byrd, J. D. Jr and Coble, H. D. 1991. Interference of selected weeds in cotton (Gossypium hirsutum). Weed Technol. 5:263269.CrossRefGoogle Scholar
Coble, H. D. and Byrd, J. D. Jr. 1992. Interference of weeds with cotton. Pages 7385. in Weeds of Cotton: Characteristics and Control. Memphis, TN: The Cotton Foundation.Google Scholar
Cousens, R. 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res. 28:281289.CrossRefGoogle Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York J. Wiley & Sons.Google Scholar
Heiniger, R. W., Spears, J. F., Bowman, D. T., and Dunphy, E. J. 2005. Crop management. North Carolina Corn Production Guide. North Carolina Cooperative Raleigh, NC Extension Service http://www.ces.ncsu.edu/plymouth/cropsci/cornguide/. Accessed: September 17, 2005.Google Scholar
Jasieniuk, M., Maxwell, B. D., and Anderson, R. L. et al. 1999. Site-to-site and year-to-year variation in Triticum aestivum–Aegilops cylindrica interference relationships. Weed Sci. 47:529537.Google Scholar
Jugenheimer, R. W. 1976. Heterosis. Pages 5560. in Sprague, G.F. and Dudley, J.W. eds. Corn: Improvement, Seed Production, and Uses. New York John Wiley & Sons.Google Scholar
Lee, D. R., Miller, D. K., Matthews, M., Wilcut, J. W., Burke, I. C., and Wilcut, C. M. 2005. When crops become weeds: effects of full season interference from Roundup Ready cotton or soybean. Proc. Beltwide Cotton conf. P. 2948.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Morgan, G. D., Bauman, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.CrossRefGoogle Scholar
Rawlings, J. O., Pantula, S. G., and Dickey, D. A. 1998. Applied regression analysis—A Research Tool. 2nd ed. New York Springer. 485488.CrossRefGoogle Scholar
Rengier, E. E. and Stoller, E. W. 1989. The effects of soybean (Glycine max) interference on the canopy architecture of common cocklebur (Xanthium strumarium), and velvetleaf (Abutilon theophrasti). Weed Sci. 37:187195.Google Scholar
Riffle, M. S., Murray, D. S., Verhalen, L. M., and Weeks, D. L. 1989. Duration and intensity of unicorn-plant (Proboscidea louisianica) interference with cotton (Gossypium hirsutum). Weed Technol. 3:313316.CrossRefGoogle Scholar
Rogers, J. B., Murray, D. S., Verhalen, L. M., and Claypool, P. L. 1996. Ivyleaf morningglory (Ipomoea hederacea) interference with cotton (Gossypium hirsutum). Weed Technol. 10:107114.CrossRefGoogle Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985a. Weed interference with cotton (Gossypium hirsutum). I. Buffalobur (Solanum rostratum). Weed Sci. 33:810814.CrossRefGoogle Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985b. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Sci. 33:815818.CrossRefGoogle Scholar
SAS 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC Statistical Analysis Systems Institute. 1028.Google Scholar
Scott, G. H., Askew, S. D., Wilcut, J. W., and Brownie, C. 2000. Datura stramonium interference and seed rain in Gossypium hirsutum . Weed Sci. 48:613617.CrossRefGoogle Scholar
Smith, B. S., Murray, D. S., and Weeks, D. L. 1990. Velvetleaf (Abutilon theophrasti) interference with cotton (Gossypium hirsutum). Weed Technol. 4:799803.CrossRefGoogle Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.Google Scholar
USDA–NASS 2000. Acreage 2000. Washington, DC USDA–NASS http://usda.mannlib.cornell.edu/reports/nassr/field/pcp-bba/acrg2000.pdf. (version October 9, 2005) Accessed: October 9, 2005.Google Scholar
USDA–NASS 2005. Acreage 2005. Washington, DC USDA-NASS http://usda.mannlib.cornell.edu/reports/nassr/field/pcp-bba/acrg0605.pdf. (version October 9, 2005) Accessed: October 9, 2005.Google Scholar
White, A. D. and Coble, H. D. 1997. Validation of HERB for use in peanut (Arachis hypogaea). Weed Technol. 11:573579.CrossRefGoogle Scholar
Wood, M. L., Murray, D. S., Banks, J. C., Verhalen, L. M., Westerman, R. B., and Anderson, K. B. 2002. Johnsongrass (Sorghum halepense) density effects on cotton (Gossypium hirsutum) harvest and economic value. Weed Technol. 16:495501.CrossRefGoogle Scholar
Wood, M. L., Murray, D. S., Westerman, R. B., Verhalen, L. M., and Claypool, P. L. 1999. Full-season interference of Ipomoea hederacea with Gossypium hirsutum . Weed Sci. 47:693696.Google Scholar
York, A. C., Beam, J. B., and Culpepper, A. S. 2005. Control of volunteer glyphosate-resistant soybean in cotton. J. Cotton Sci. 9:102109.Google Scholar
York, A. C. and Culpepper, A. S. 2005. Weed management in cotton. Pages 75114. in Edmisten, K.L. ed. Cotton Information AG 417. Raleigh, NC North Carolina Cooperative Extension Service.Google Scholar
York, A. C., Stewart, A. M., Vidrine, P. R., and Culpepper, A. S. 2004. Control of volunteer glyphosate-resistant cotton in glyphosate-resistant soybean. Weed Technol. 18:532539.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-kxqz4 Total loading time: 0.464 Render date: 2021-01-26T07:09:32.211Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glyphosate-resistant Corn Interference in Glyphosate-resistant Cotton
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Glyphosate-resistant Corn Interference in Glyphosate-resistant Cotton
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Glyphosate-resistant Corn Interference in Glyphosate-resistant Cotton
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *