Skip to main content Accessibility help
×
Home

Weed-Suppressing Potential of Dodder (Cuscuta hygrophilae) and its Phytotoxic Constituents

  • Tran Dang Khanh (a1), Luong Chi Cong (a1), Tran Dang Xuan (a2), Sun Joo Lee (a1), Dong Soo Kong (a3) and Ill Min Chung (a1)...

Abstract

Dodder is a parasitic weed that is troublesome to the growth of many plants. Our study shows that this invasive species contains strong allelopathic potential, exerting strong inhibition against the growth of indicator plants and noxious paddy weeds in bioassay and pot trials. In a greenhouse, incorporation of 0.5 t ha−1 of dried dodder plants to paddy soil reduced spontaneous growth of paddy weeds by about 50%, whereas the 1.5 to 2 t ha−1 dose suppressed biomass of paddy weeds by more than 75% and completely controlled emergence of barnyardgrass and monochoria. By the use of a separation resin, 22 compounds were separated from dodder and identified by gas chromatography–mass spectrometry as belonging to terpenes, long-chain fatty acids, phenols, phenolic acids, and lactone. Among these compounds, 15 substances were quantified and tested for their herbicidal activity. Quantity of cinnamic acid was the highest (37.3 mg g−1), followed by dihydro-5,6-dehydrokavain (DDK; 6.0 mg g−1), myristic acid (3.2 mg g−1), and methyl cinnamate (2.1 mg g−1), whereas the amounts of other compounds were between 0.01 and 0.1 mg g−1. It is suggested that the content of the terpenes within dodder, which was rather high in amount (0.41–2.1 mg g−1), correlated to its strength of chemical cues to find host plants. Cinnamic acid, DDK, methyl cinnamate, and vanillin exerted the most potent herbicidal activities against radish growth. Findings of this study propose that cinnamic acid, DDK, and methyl cinnamate are responsible for its strong phytotoxic action of dodder plants. However, whether these plant growth inhibitors and other compounds detected from the dodder can suppress emergence of their hosts as well as contributing to its strong invasiveness needs further elucidation.

Copyright

Corresponding author

Corresponding author's E-mail: imcim@konkuk.ac.kr

References

Hide All
An, M., Pratley, R. E., Haig, T., and Liu, D. L. 2005. Whole-range assessment: a simple method for analyzing allelopathic dose-response data. Nonlinearity Biol. Toxicol. Med. 3:245260.
Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., and Flamini, G. 2003. Essential oils from Mediterranean Lamiaceae as weed germination inhibitor. J. Agric. Food Chem. 51:61586164.
Arimura, G., Ozawa, R., Shomoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induce volatiles elicit defense genes in lima bean leaves. Nature. 406:512515.
Baldwin, I. T. and Schultz, J. C. 1983. Rapid change in tree leaf chemistry induced by damage: evidence for communication between plants. Science. 221:277279.
Baldwin, L. T., Halitschke, R., Paschold, A., von Dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant interaction: “talking trees” in the genomics era. Science. 311:812815.
Bouwmeester, H. J., Matusova, R., Sun, Z. K., and Beale, M. H. 2003. Secondary metabolite signaling in host parasitic plant interaction. Cur. Opin. Plant Biol. 6:358364.
Dawson, J. H., Musselman, L. J., Wolswinkel, P., and Dorr, I. 1994. Biology and control of Cuscuta . Rev. Weed Sci. 6:265317.
Elzaawely, A. A., Xuan, T. D., and Tawata, S. 2005. Allelopathic activity and identification of allelochemicals from Rumex japonicus Houtt. Allelo J. 16 (2):109216.
Elzaawely, A. A., Xuan, T. D., and Tawata, S. 2006. Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) B. L. Burrt. & R.M. Sm. leaves exposed to copper sulphate. Environ. Exp. Bot. 59:347353.
Elzaawely, A. A., Xuan, T. D., and Tawata, S. 2007. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B. L. Burrt. & R.M. Sm. and their antioxidant activity. Food Chem. 103:486494.
Haidar, M. A., Iskandarani, N., Sidahmed, M., and Baalbaki, R. 1999. Response of field dodder (Cuscuta hygrophilae) seeds to soil solarization and chicken manure. Crop Prot. 18:253258.
Holm, L., Doll, J., Holm, E., Panch, J., and Herberger, J. 1997. World Weeds: Natural History and Distribution. New York J. Wiley & Sons. 1129.
Ihl, B., Jacob, F., and Sembdner, G. 1984. Studies on Cuscuta reflex ROXB. V. The level of endogenous hormones in the parasite, Cuscuta reflexa, and its host, Vicia faba L., and a suggested role in the transfer of nutrients from host to parasite. Plant Growth Reg. 2:7790.
Karban, R., Maron, J., Felton, G. W., Ervin, G., and Eichenseer, H. 2003. Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos. 100:325332.
Kelly, C. K. 1992. Resource choice in Cuscuta europaea . Proc Nat. Acad. Sci. USA. 89:1219412197.
Khanh, T. D., Chung, I. M., Tawata, S., and Xuan, T. D. 2006a. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Res. 46:296303.
Khanh, T. D., Chung, I. M., Xuan, T. D., and Tawata, S. 2005a. The exploitation of crop allelopathy in sustainable agriculture production. J. Agron. Crop Sci. 191:172184.
Khanh, T. D., Elzaawely, A. A., Chung, I. M., Ahn, J. K., Tawata, S., and Xuan, T. D. 2007. Role of allelochemicals for weed management in rice. Allelo. J. 19:8596.
Khanh, T. D., Hong, N. H., Nhan, D. Q., Kim, S. L., Chung, I. M., and Xuan, T. D. 2006b. Herbicidal activity of Stylosanthes guianensis and its phytotoxic components. J. Agron. Crop Sci. 192:427433.
Khanh, T. D., Hong, N. H., Xuan, T. D., and Chung, I. M. 2005b. Paddy weeds control by medicinal leguminous plants from Southeast Asia. Crop Prot. 24:421431.
Khanh, T. D., Xuan, T. D., Chin, D. V., Chung, I. M., Elzaawely, A. A., and Tawata, S. 2006c. Current status of biological control of paddy weeds in Vietnam. Weed Biol. Manag. 6:19.
Koch, A. M., Binder, C., and Sanders, I. R. 2004. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities? New Phytol. 162:147155.
Kujit, J. 1969. The biology of parasitic flowering plant. Berkeley University of California Press. 368.
Liu, D. L., An, M., and Wu, H. 2007. Implementation of WESIA: whole-range evaluation of the strength of inhibition in allelopathic-bioassay. Allelo. J. 19:203214.
Malik, C. P. and Singh, M. B. 1979. Physiological and biochemical aspects of parasitism in Cuscuta: a review. Ann. Rev. Plant Sci. 1:67112.
Nadler-Hassar, T. and Rubin, B. 2003. Natural tolerance of Cuscuta campestris to herbicides inhibiting amino acid biosynthesis. Weed Res. 43:341347.
Nishida, N., Tamotsu, S., Nagata, N., Saito, C., and Sakai, A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedling. J. Chem. Ecol. 31:11871203.
Patterson, D. T. 1981. Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max). Weed Sci. 29:5359.
Pennings, S. C. and Callaway, R. M. 2002. Parasitic plants: parallels and contrasts with herbivores. Oecologia. 131:479489.
Reigosa, M. J., Souto, X. C., and Gonzalez, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28:8388.
Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effect of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–131.
Runyon, J. B., Mescher, M. C., and De Moraes, C. M. 2006. Volatile chemical cues guide host location and host selection by parasitic plant. Science. 313:19641967.
Sauerborn, J., Muller-Stover, D., and Hershenhorn, J. 2007. The role of biological control in managing parasitic weeds. Crop Prot. 26:246254.
Scharf, M. E., Nguyen, S. N., and Song, C. 2006. Evaluation of volatile low molecular weight insecticides using Drosophila melanogaster as a model. Pest Manag. Sci. 62:655663.
Singh, H. P., Batish, D. R., Kaur, S., Ramezani, H., and Kohli, R. K. 2002a. Comparative phototoxicity of four monoterpenes against Cassia occidentalis . Ann. Appl. Biol. 141:111116.
Singh, H. P., Batish, D. R., and Kohli, R. K. 2002b. Allelopathic effects of two volatile monoterpenes against billy goat weed (Ageratum conyzoides L). Crop Prot. 21:347350.
Thomas, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425431.
Tsuzuki, E., Yamoto, Y., and Shimizu, T. 1987. Fatty acids in buckwheat are growth inhibitors. Ann. Bot. 60:6970.
Vaughn, K. C. 2002. Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasm. 220:189200.
Vokou, D., Douvli, P., Blionis, G. J., and Halley, J. M. 2003. Effects of monoterpenoids, acting alone or in pair, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29:22812301.
Xuan, T. D., Chikara, J., Ogushi, Y., Tsuzuki, E., Terao, H., Khanh, T. D., and Matsuo, M. 2003a. Application of kava (Piper methysticum) root as potential herbicide and fungicide. Crop Prot. 22:873881.
Xuan, T. D., Tawata, S., Khanh, T. D., and Chung, I. M. 2005. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot. 24:197206.
Xuan, T. D., Tsuzuki, E., Terao, H., Matsuo, M., and Khanh, T. D. 2003b. Alfalfa, rice by-products, and their incorporation for weed control in rice. Weed Biol. Manag. 3:137144.
Xuan, T. D., Tsuzuki, E., Terao, H., Matsuo, M., Khanh, T. D., and Chung, I. M. 2004. Evaluation on phytotoxicity of neem (Azadirachta indica. A. Juss) to crops and weeds. Crop Prot. 23:335345.
Yoder, J. I. 2001. Host–plant recognition by parasitic Scrophulariaceae. Curr. Opin. Plant Biol. 4:359365.
Yu, J. Q. and Matsui, Y. 1994. Phytotoxic substances in root exudates of cucumber (Cuscumis sativus L). J. Chem. Ecol. 20:2131.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed