Skip to main content Accessibility help

Use of AFLP Markers to Assess Genetic Diversity in Palmer Amaranth (Amaranthus palmeri) Populations from North Carolina and Georgia

  • Aman Chandi (a1), Susana R. Milla-Lewis (a1), David L. Jordan (a1), Alan C. York (a1), James D. Burton (a2), M. Carolina Zuleta (a1), Jared R. Whitaker (a1) and A. Stanley Culpepper (a3)...


Glyphosate-resistant Palmer amaranth is a serious problem in southern cropping systems. Much phenotypic variation is observed in Palmer amaranth populations with respect to plant growth and development and susceptibility to herbicides. This may be related to levels of genetic diversity existing in populations. Knowledge of genetic diversity in populations of Palmer amaranth may be useful in understanding distribution and development of herbicide resistance. Research was conducted to assess genetic diversity among and within eight Palmer amaranth populations collected from North Carolina and Georgia using amplified fragment length polymorphism (AFLP) markers. Pair-wise genetic similarity (GS) values were found to be relatively low, averaging 0.34. The highest and the lowest GS between populations were 0.49 and 0.24, respectively, while the highest and the lowest GS within populations were 0.56 and 0.36, respectively. Cluster and principal coordinate (PCO) analyses grouped individuals mostly by population (localized geographic region) irrespective of response to glyphosate or gender of individuals. Analysis of molecular variance (AMOVA) results when populations were nested within states revealed significant variation among and within populations within states while variation among states was not significant. Variation among and within populations within state accounted for 19 and 77% of the total variation, respectively, while variation among states accounted for only 3% of the total variation. The within population contribution towards total variation was always higher than among states and among populations within states irrespective of response to glyphosate or gender of individuals. These results are significant in terms of efficacy of similar management approaches both in terms of chemical and biological control in different areas infested with Palmer amaranth.


Corresponding author

Corresponding author's E-mail:


Hide All
Afanador, L. K., Haley, S. D., and Kelly, J. D. 1993. Adoption of a “mini-prep” DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Annu. Rep. Bean Improv. Coop. 36: 1011.
Andersen, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., and Sorrells, M. E. 1993. Optimizing parental selection for genetic linkage maps. Genome. 36: 181186.
Barrett, R. D. H. and Schluter, D. 2008. Adaptation from standing genetic variation. Trends Eco. Evol. 23: 3844.
Bond, J. A. and Oliver, L. R. 2006. Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions. Weed Sci. 54: 121126.
Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314331.
Burgos, N. R., Kuk, Y., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibiting herbicides. Pestic. Manag. Sci. 57: 449457.
Caballero, A., Quesada, H., and Alvarez, E. R. 2008. Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics. 179: 539554.
Chan, K. F. and Sun, M. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus . Thoer. Appl. Genet. 95: 865873.
Coulibaly, S., Pasquet, R. S., Papa, R., and Gepts, P. 2002. AFLP analysis of the phonetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 104: 358366.
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12: 306310.
d'Ennequin, M. L. T., Panuad, O., and Toupance, B. 2000. Assessment of genetic relationship between Setaria italica and its wild relative S. viridis using AFPL markers. Theor. Appl. Genet. 100: 10611066.
Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology. 26: 297302.
Esfahani, S. T., Shiran, B., and Balali, G. 2009. AFLP markers for the assessment of genetic diversity in European and North American potato varieties cultivated in Iran. Crop Breed. Appl. Biotechnol. 9: 7586.
Fernald, M. L. 1950. Gray's Manual of Botany. 8th ed. New York: American Book Co. 602 p.
Garcia-Mas, J., Oliver, M., Gómez-Paniagua, H., and de Vicente, M. C. 2000. Comparing AFLP, RAPD, and RFLP markers for measuring genetic diversity in melon. Thoer. Appl. Genet. 101: 860864.
Garvey, P. V. 1999. Goosegrass (Eleusine indica) and Palmer amaranth (Amaranthus palmeri) interference in plasticulture tomato. Ph.D Dissertation. Raleigh, NC: North Carolina State University. 101 p.
Geuna, F., Toschi, M., and Bassi, D. 2003. The use of AFLP markers for cultivar identification in apricot. Plant Breed. 122: 526531.
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6: 587591.
Harper, J. L. 1977. Population Biology of Plants. San Diego, CA: Academic Press. 892 p.
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. Accessed: January 2, 2012.
Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6: 615620.
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4: 141149.
Hongtrakul, V., Huestis, G. M., and Knapp, S. J. 1997. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor. Appl. Genet. 95: 400407.
Horak, M. J. and Peterson, D. E. 1995. Populations of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9: 192195.
Ilgin, M., Kafkas, S., and Ercisli, S. 2009. Molecular characterization of plum cultivars by AFLP markers. Biotechnol. & Biotechnol. Eq. 23: 11891193.
Jha, P., Norsworthy, J. K., Malik, M. S., Bangarwa, S. K., and Oliveira, M. J. 2006. Temporal emergence of Palmer amaranth from a natural seedbank. Proc. South. Weed Sci. Soc. 59: 177.
Keeley, P. E., Carter, C. H., and Thullen, R. M. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35: 199204.
Keivani, M., Ramezanpour, S. S., Soltanloo, H., Choukan, R., Naghavi, M., and Ranjbar, M. 2010. Genetic diversity assessment of alfalfa (Medicago sativa L.) populations using AFLP markers. Aust. J. Crop Sci. 4: 491497.
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42: 523527.
Lima, M. L. A., Garcia, A. A. F., Oliveira, K. M., Matsuoka, S., Arizono, H., de Souza, C. L. Jr., and de Souza, A. P. 2002. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet. 104: 3038.
Mangolin, C. A., de Oliveira, R. S. Jr., and Machado, M. F. P. S. 2012. Genetic diversity in weeds. Pages 223248 in Fernandez, R. A., ed. Herbicides-Environmental Impact Studies and Management Approaches. Rijeka, Croatia: InTech Europe, Available online:
Martos, V., Royo, C., Rharrabti, Y., and Garcia del Moral, L. F. 2005. Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res. 91: 107116.
McRoberts, N., Sinclair, W., McPherson, A., Franke, A. C., Saharan, R. P., Malik, R. K., Singh, S., and Marshall, G. 2005. An assessment of genetic diversity within and between populations of Phalaris minor using ISSR markers. Weed Res. 45: 431439.
Milla, S. R., Isleib, T. G., and Stalker, H. T. 2005. Taxonomic relationships among Arachis species as revealed by AFLP markers. Genome. 48: 111.
Nei, M. and Li, W. H. 1976. The transient distribution of allele frequencies under mutation pressure. Genet. Res. Camb. 28: 205214.
Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1995. DNA-based marker systems to determine genetic diversity of weedy species and their application to biocontrol. Weed Sci. 43: 504513.
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown Capsicum annuum . Weed Technol. 22: 296302.
Pester, A. P., Ward, S. M., Fenwick, A. L., Westra, P., and Nissen, S. J. 2003. Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Sci. 51: 287293.
Powell, W., Morgante, M., and Andre, C. 1996. The comparison of RFLP, RPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225338.
Price, S. C., Allard, R. W., Hill, J. E., and Naylor, J. 1985. Associations between discrete genetic loci and genetic variability for herbicide reaction in plant populations. Weed Sci. 33: 650653.
Radosevich, S., Holt, J., and Ghersa, C. 2007. Ecology of Weeds: Relationship to Agriculture and Natural Resource Management. 3rd ed. Hoboken, NJ: John Wiley and Sons. 150 p.
Ranade, S. A., Kumar, A., Goswami, M., Farooqui, N., and Sane, P. V. 1997. Genome analysis of amaranths: determination of inter- and intraspecies variations. J. Biosci. 22: 457464.
Ray, T. and Roy, S. C. 2009. Genetic diversity of Amaranthus species from Indo-gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J. Hered. 100: 338347.
Rohlf, F. J. 2000. NTSYS-PC: numerical taxonomy and multivariate analysis system, version 2.2. Setauket, NY: Exeter Software.
Rold'an-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., and De Loose, M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6: 125134.
Russell, J. R., Fuller, J. D., and Macaulay, M. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs, and RAPDs. Theor. App. Genet. 95: 714722.
Saitou, M. and Nei, N. 1987. The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406425.
Schneider, S., Roessli, D., and Excoffier, L. 2002. ARLEQUIN version 2.001: a software for population genetics data analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva, Switzerland, Available at:
Sharma, S. K., Knox, M. R., and Ellis, T. H. N. 1996. AFLP analysis of diversity and phylogeny of lens and its comparison with RAPD analysis. Theor. App. Gen. 93: 751758.
Slotta, T. A. B. 2008. What we know about weeds: insights form genetic markers. Weed Sci. 56: 322326.
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14: 122126.
Sosnoskie, L. M., Webster, T. M., Kichler, J. M., Macrae, A. W., and Culpepper, A. S. 2007. An estimation of pollen flight time and dispersal distance for glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Proc. South. Weed Sci. Soc. 60: 229.
Sterling, T. M., Thompson, D. C., and Abbott, L. B. 2004. Implications of invasive plant variation for weed management. Weed Technol. 18: 13191324.
Tabacchi, M., Mantegazza, R., Spada, A., and Ferrero, A. 2006. Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields. Weed Sci. 54: 10861093.
Ulloa, O., Ortega, F., and Campos, H. 2003. Analysis of genetic diversity in red clover (Trifolium pretense L.) breeding populations as revealed by RAPD genetic markers. Genome. 46: 529535.
Varshney, R. K., Chabane, K., Hendre, P. S., Aggarwal, R. K., and Graner, A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated, and elite barleys. Plant Sci. 173: 638649.
Vekemans, X., Beauwens, T., Lemaire, M., and Ruiz, I. R. 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol. 11: 139151.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nuc. Acids Res. 23: 44074414.
Warwick, S. I. 1991. Herbicide resistance in weedy plants: physiology and population biology. Annu. Rev. Ecol. Syst. 22: 95114.
Wassom, P. J. and Tranel, J. J. 2005. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J. Hered. 96: 410416.
Webster, T. M. 2004. Weed survey—southern states. Proc. South. Weed Sci. Soc. 57: 404426.
Webster, T. M. 2005. Weed survey—southern states. Proc. South. Weed Sci. Soc. 58: 291306.
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974–1995. Weed Technol. 11: 308317.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed