Skip to main content Accessibility help
×
Home

Uptake, Translocation, and Metabolism of MG-191 Safener in Corn (Zea Mays L.)

  • István Jablonkai (a1) and Ferenc Dutka (a1)

Abstract

The time-dependent uptake, translocation, and metabolism of [14C]MG-191 safener and the influence of EPTC on these processes were studied using 5-d-old corn seedlings grown in nutrient solution. Plants absorbed relatively low levels of root-applied radiolabel at both 10 μM and 50 μM [14C]MG-191 rates during 6 d of exposure. Amounts of absorbed radioactivity increased with time. Addition of 50 μM EPTC, in general, did not alter amounts of [14C]MG-191 taken up. Initial translocation of radiolabel from roots to shoots was more rapid at 10 μM [14C]MG-191 treatment compared to 50 μM. EPTC had no effect on radiolabel movement at either safener rate. MG-191 was metabolized rapidly to water-soluble metabolites. Slower formation of water-soluble products was detected only during the initial 3 h in the presence of EPTC. Also, thin-layer chromatographic analyses of water- and hexane-soluble metabolite fractions confirmed rapid transformation of the parent molecule. Because addition of EPTC retarded parent MG-191 metabolism 3 h after treatment, we assume that initial availability of the MG-191 molecule may be prerequisite to its protective effect.

Copyright

References

Hide All
1. Breaux, E. J., Hoobler, M. A., Patanella, J. E., and Leyes, G. A. 1983. Mechanism of action of thiazole safeners. Pages 163175 in Hatzios, K. K. and Hoagland, R. E., eds. Crop Safeners for Herbicides: Development, Uses, and Mechanism of Action. Academic Press, San Diego, CA.
2. Dutka, F. and Komives, T. 1983. On the mode of action of EPTC and its antidotes. Pages 213218 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. Vol 3, Pergamon Press, Oxford, UK.
3. Dutka, F. and Komives, T. 1987. MG-191: a new selective herbicide antidote. Pages 201204 in Greenhalgh, R. and Roberts, T. R., eds. Pesticide Science and Biotechnology. Blackwell, Oxford, UK.
4. Dutka, F., Komives, T., Söptei, Cs., and Tömördi, E. 1987. MG-191—a new selective herbicide antidote. Proc. British Crop Prot. Conf.—Weeds. 1:7784.
5. Dutka, F. 1987. Chemical reactivity—biological activity relationship: Rational strategy for development of bioactive compounds. Proc. Conf. of Hungarian Chem. (Vegyeszkonferencia), Debrecen, Hungary, Program: 9.
6. Dutka, F. 1991. Bioactive chemical bond systems. Z. Naturforsch. 46c:805809.
7. Ekler, Z. and Dutka, F. 1991. Chemical reactivity and safener activity of acetal compounds. Z. Naturforsch. 46c:810814.
8. Fuerst, E. P. 1987. Understanding the mode of action of the chloroacetanilide and thiocarbamate herbicides. Weed Technol. 1:270277.
9. Halpert, J. E., Balfour, C., Miller, N. E., and Kaminsky, L. S. 1986. Dichloromethyl compounds as mechanism-based in activators of rat liver cytochrome P-450 in vitro. Mol. Pharmacol. 30:1924.
10. Hatzios, K. K. 1989. Mechanism of action of herbicide safeners: An overview. Pages 65101 in Hatzios, K. K. and Hoagland, R. E., eds. Crop Safeners for Herbicides: Development, Uses, and Mechanism of Action. Academic Press, San Diego, CA.
11. Jablonkai, I. and Dutka, F. 1990. Synthesis of 2-dichloromethyl-2-methyl-[14C]-1,3-dioxolane. Radiochem. Nucl. Chem., Letters 144:173177.
12. Jablonkai, I. and Dutka, F. 1991. Effect of the site of MG-191 application on acetochlor herbicide uptake, distribution and phytotoxicity. Pest. Sci. 31:9193.
13. Jablonkai, I. 1991. Basis for differential chemical selectivity of MG-191 safener against acetochlor and EPTC injury to maize. Z. Naturforsch. 46c:836845.
14. Jablonkai, I. and Hatzios, K. K. 1994. Microsomal oxidation of the herbicides EPTC and acetochlor and of the safener MG-191 in maize. Pestic. Biochem. Physiol. 48:98109.
15. Komives, T. and Dutka, F. 1989. Effects of herbicide safeners on levels and activity of cytochrome P-450 and other enzymes of corn. Pages 129145 in Hatzios, K. K. and Hoagland, R. E., eds. Crop Safeners for Herbicides: Development, Uses, and Mechanisms of Action. Academic Press, Inc., New York.
16. Kulkarni, A. P. and Hodgson, E. 1980. Metabolism of insecticides by mixed function oxidase system. Pharmacol. Ther. 8:379475.
17. Kuramshin, E. M., Kulak, L. G., Nazarov, M. N., Zlotinskii, S. S., and Rakhmankulov, D. L. 1989. Oxidation of cyclic acetals as a preparative method of diol monoester production. J. Pract. Chem. 331:591599.
18. Miaullis, J. B., Thomas, V. M., Gray, R. A., Murphy, J. J., and Hollingworth, R. M. 1978. Metabolism of R-25788 (N,N-diallyl-2,2-dichloroacetamide) in corn plants, rats and soil. Pages 109131 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.
19. Stephenson, G. R. and Chang, F. Y. 1978. Comparative activity and selectivity of herbicide antidotes. Pages 3561 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.
20. Szell, E., Csala, I., Fodor, F., Komives, T., and Dutka, F. 1985. Comparative study of a new class of herbicide antidote. Cereal Res. Comm. 13:5561.
21. Yenne, S. P., Hatzios, K. K., and Meredith, S. A. 1990. Uptake, translocation, and metabolism of oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor) and their influence on metolachlor metabolism. J. Agric. Food Chem. 38:19571961.

Keywords

Uptake, Translocation, and Metabolism of MG-191 Safener in Corn (Zea Mays L.)

  • István Jablonkai (a1) and Ferenc Dutka (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed