Skip to main content Accessibility help

Total Nonstructural Carbohydrate Trends in Deeproot Sedge (Cyperus entrerianus)

  • Jonathan R. King (a1), Warren C. Conway (a1), David J. Rosen (a2), Brian P. Oswald (a1) and Hans M. Williams (a1)...


Native to temperate South America, deeproot sedge has naturalized throughout the southeastern United States. Often forming dense, homogenous stands, deeproot sedge has become widespread, invasive, and potentially harmful ecologically throughout the coastal prairie ecoregion of Texas. Possessing characteristics (rapid growth, generalized habitat requirements) of other weedy congeners (purple nutsedge and yellow nutsedge), its relatively recent expansion highlights the critical need to develop effective control techniques and strategies for this species throughout this endangered ecoregion. Research was performed to delineate total nonstructural carbohydrate (TNC) trends in deeproot sedge rhizomes for development of a phenologically based schedule for herbicide applications and mechanical treatments. Overall, TNC levels were greatest in May to August and lowest from October to January, regardless of study area. Apparently, deeproot sedge exerts little energy into seed production because TNC levels were continually replenished throughout the growing season. As such, foliar-herbicide application throughout the growing season should achieve total plant kill. Conversely, deeproot sedge rhizome TNC levels never fell below 30%, even during winter, which indicates that winter mechanical treatments or winter prescribed fires will not be effective because substantial rhizome reserves are present to support resprouting during the next growing season. Beyond a priori prevention, sequential herbicide applications combined with integrated, sequential, prescribed fire and herbicide treatments will be needed for long-term deeproot sedge control throughout its geographic range.


Corresponding author

Corresponding author's E-mail:


Hide All
Adams, CR, Galatowitsch, SM (2006) Increasing the effectiveness of reed canary grass (Phalaris arundinacea L.) control in wet meadow restorations. Restor Ecol 14:441451
Barrilleaux, TC, Grace, JB (2000) Growth and invasive potential of Sapium sebiferum (Euphorbiaceae) within the coastal prairie region: effects of soil and moisture regime. Am J Bot. 87:10991106
Bradley, KW, Hagood, ES Jr. (2002) Influence of sequential herbicide treatment, herbicide application timing, and mowing on mugwort (Artemisia vulgaris) control. Weed Technol 16:346352
Brady, HA, Hall, O (1976) Relation of sugar changes and herbicide susceptibility in woody plants. Proceedings South Weed Science Society 29:276283
Bryson, CT, Carter, R (2003) Reproductive potential and control strategies for deeprooted sedge (Cyperus entrerianus). Proceeding Weed Science Society Am. 43:1314
Bryson, CT, Carter, R (2004) Biology of pathways for invasive weeds. Weed Technol 18:12161220
Carter, R (1990) Cyperus entrerianus (Cyperaceae), an overlooked species in temperate North America. Sida 14:6977
Carter, R, Bryson, CT (1996) Cyperus entrerianus: a little known aggressive sedge in the southeastern United States. Weed Technol 10:232235
Chapin, FS III, Schulze, ED, Mooney, HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst. 21:423447
Chauhan, BS, Johnson, DE (2009) Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice. Ann Appl Biol. 155:103112
Conway, WC, Smith, LM, Sosebee, RE, Bergan, JF (1999) Total nonstructural carbohydrate trends in Chinese tallow roots. J Range Manag. 52:539542
Coyne, PI, Cook, CW (1970) Carbohydrate reserve cycles in eight desert range species. J Range Manag. 23:438444
Fuentes, RG, Baltazar, AM, Merca, FE, Ismail, AM, Johnson, DE (2010) Morphological and physiological responses of lowland purple nutsedge (Cyperus rotundus L.) to flooding. AoB Plants 2010:plq010 DOI:10.1093/aobpla/plq010
Glerum, C (1980) Food sinks and food reserves of trees in temperate climates. N Z J For Sci. 10:176185
Grace, JB, Allain, L, Allen, C (2000) Vegetation associations in a rare community type—coastal tallgrass prairie. Plant Ecol 147:105115
Johnson, WG, Li, J, Wait, JD (2003) Johnsongrass control, total nonstructural carbohydrates in rhizomes, and regrowth after application of herbicides used in herbicide resistant corn (Zea mays). Weed Technol 17:3641
King, JR (2011) Total nonstructural carbohydrate trends and seed ecophysiology of the exotic invasive deeprooted sedge (Cyperus entrerianus) and its response to herbicide and prescribed fire applications on the Texas coast. . Stephen F. Austin University, Nacogdoches, TX, 160 p
King, JR, Conway, WC, Rosen, DJ, Oswald, BP (2012) Seed biomass production and germination rates of Cyperus entrerianus . J Torrey Bot Soc 139:7685
Lacey, JR, Olson-Rutz, KM, Haferkamp, MR, Kennett, GA (1994) Effects of defoliation and competition on total non-structural carbohydrates of spotted knapweed. J Range Manag. 47:481484
Lesica, P, Martin, B (2003) Effects of prescribed fire and season of burn on recruitment of the invasive exotic plant, Potentilla recta, in a semiarid grassland. Restor Ecol 11:516523
Loescher, WH, McCamant, T, Keller, JD (1990) Carbohydrate reserves, translocation, and storage in woody plant roots. Hortscience 25:274281
Menke, JW, Trlica, MJ (1981) Carbohydrate reserve, phenology, and growth cycles of nine Colorado range species. J Range Manag. 34:269277
Mislevy, P, Mullahey, JJ, Martin, FG (1999) Preherbicide mowing and herbicide rate on tropical soda apple (Solanum viarum) control. Weed Technol 13:4247
Mitchell, R, Moffet, C, Sosebee, R (2007) A physiological basis for controlling leafy spurge on Nebraska rangeland. Rangelands 2007:1214
Muzik, TJ, Mauldin, WG (1964) Influence of environment on the response of plants to herbicides. Weeds 12:142145
Pearcy, RW, Bjorkman, O, Caldwell, MM, Keeley, JE, Monson, RK, Strain, BR (1987) Carbon gain by plants in natural environments. Bioscience 37:2129
Pena-Fronteras, JT, Villalobos, MC, Baltazar, AM, Merca, FE, Ismail, AM, Johnson, DE (2009) Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Ann Bot (Lond) 103:295302
Reddy, KN, Bryson, CT (2009) In-crop and autumn-applied glyphosate reduced purple nutsedge (Cyperus rotundus) density in no-till glyphosate-resistant corn and soybean. Weed Technol 23:384390
Renz, MJ, DiTomaso, JM (2004) Mechanism for the enhanced effect of mowing followed by glyphosate application to resprouts of perennial pepperweed (Lepidium latifolium). Weed Sci. 52:1423
Robocker, WC, Schirman, R, Zamora, BA (1972) Carbohydrate reserves in roots and Dalmatian toadflax. Weed Sci. 20:212214
Rosen, DJ, Carter, R, Bryson, CT (2006) The recent spread of deeprooted sedge (Cyperaceae) in the southeastern United States and its invasive potential in bottomland hardwood forests. Southeast Nat. 5:333344
SAS Institute Inc. (2003) SAS OnlineDoc 9.1. Cary, NC SAS Institute
Soil Survey Staff, Natural Resources Conservation Service, U.S. Department of Agriculture. Web Soil Survey. Accessed May 7, 2011
Sheley, RL, Carpinelli, MF, Reever Morghan, KJ (2007) Effects of imazapic on target and nontarget vegetation during revegetation. Weed Technol 21:10711081
Smith, BE, Shilling, DG, Haller, WT, MacDonald, GE (1993) Factors influencing the efficacy of glyphosate on torpedograss (Panicum repens L.). J Aquat Plant Manag. 31:199202
Sosebee, RE (1984) Physiological, phenological, and environmental considerations in brush and weed control. Pages 2744 in McDaniel, K, ed. Brush Management Symposium Proceedings Lubbock, TX Texas Tech University Press
Stoller, EW, Sweet, RD (1987) Biology and life cycle of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Technol 1:6673
Summerlin, JR Jr., Coble, HD, Yelverton, FH (2000) Effect of mowing on perennial sedges. Weed Sci. 48:501507
Troxler, SC, Burke, IC, Wilcut, JW, Smith, WD, Burton, J (2003) Absorption, translocation, and metabolism of foliar-applied CGA-362622 in purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 51:1318
Wardlaw, IA (1968) The control and pattern of movement of carbohydrates in plants. Bot Rev 34:79105
Wilen, CA, Holt, JS, McCloskey, WB (1996) Effects of soil moisture on observed and predicted yellow nutsedge (Cyperus esculentus L.) emergence. Weed Sci. 44:890896
Zar, JH (1999) Biostatistical Analysis. 4th edn. Upper Saddle River, NJ Prentice Hall. Pp 275278


Total Nonstructural Carbohydrate Trends in Deeproot Sedge (Cyperus entrerianus)

  • Jonathan R. King (a1), Warren C. Conway (a1), David J. Rosen (a2), Brian P. Oswald (a1) and Hans M. Williams (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed