Skip to main content Accessibility help

Spread of Water and Oil Droplets on Johnsongrass (Sorghum halepense) Leaves

  • Chester G. Mcwhorter (a1), Clark Ouzts (a2) and James E. Hanks (a1)


Comparative spread of droplets of several different oils and water with different adjuvants on leaf surfaces was investigated. Spread was better on the lower surface of johnsongrass leaves than on upper leaf surfaces with nine of 14 oils studied; two spread best on upper leaf surfaces, and three were equal in spread on both surfaces. Differences in spread coefficients did not appear to be directly related to surface tension, viscosity, or mid-boiling point of the oils. Soybean or cottonseed oils did not spread as well as petroleum oils but methylated soybean and sunflower oils had high spread coefficients on both upper and lower leaf surfaces. All but one petroleum-base oil spread three to four times better on leaf surfaces than on oil-sensitive paper. Water mixtures of an organosilicone surfactant spread much better on water-sensitive paper and on johnsongrass leaves than water with conventional adjuvants, but spread of paraffinic oils exceeded that of any water-adjuvant mixture. Spread coefficients of most petroleum-base oils were better on lower than upper leaf surfaces. Spread usually increased as the age of leaves increased from 14 to 56 d. Water droplets with adjuvant had at least an 86% weight loss after 6 min, but low volatile paraffinic oil droplets had little weight loss 2 d after application.



Hide All
1. Anonymous. 1983. Oil-sensitive paper CF1 for monitoring spray distribution. CIBA-GEIGY, Ltd. Publication 18660XYe, Basle, Switzerland. 16 pp.
2. Anonymous. 1985. Water-sensitive paper for monitoring spray distribution. CIBA-GEIGY. Ltd. Publication 19374XYe, Basle. Switzerland. 16 pp.
3. Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes. Pages 139166 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.
4. Baker, E. A., Hunt, G. M., and Stevens, P.J.G. 1983. Studies of plant cuticle and spray droplet interactions: a fresh approach. Pestic. Sci. 14:645658.
5. Barrentine, W. L. and McWhorter, C. G. 1988. Johnsongrass (Sorghum halepense) control with herbicides in oil diluents. Weed Sci. 36:102110.
6. Bianchi, G., Avato, P., Scarpa, O., Murelli, C., Audisio, G., and Rossini, A. 1989. Composition and structure of maize epicuticular wax esters. Phytochemistry 28:165171.
7. Boize, L., Gudin, C., and Purdue, G. 1976. The influence of leaf surface roughness on the spreading of oil spray drops. Ann. Appl. Biol. 84:205211.
8. Brunskill, R. T. 1956. Factors affecting the retention of spray droplets on leaves. Proc. 3rd Br. Weed Control Conf. 2:593603.
9. Bukovac, M. J., Petracek, P. D., Fader, R. G., and Morse, R. D. Sorption of organic compounds by plant cuticles. Weed Sci. 38:289298.
10. Chambers, G. V., Bulawa, M. C., McWhorter, C. G., and Hanks, J. E. 1992. Use of surface relationship models to predict the spreading of nonaqueous droplets on johnsongrass. Pages 218246 in Chasin, D. G. and Bode, L. E., eds. Pesticide Formulations and Application Systems. Am. Soc. Test. Mater. STP 1112, Philadelphia, PA.
11. Coutts, H. H. and Furmidge, C.G.L. 1971. ULV Spraying. Span 14:143145.
12. Dominque, J. 1990. Probing the chemistry of the solid/liquid interface. Am. Lab. 22:50, 52, 54, 55.
13. Elliott, J. G. and Wilson, B. J. 1983. The influence of weather on the efficiency and safety of pesticide application—the drift of herbicides. Br. Crop Prot. Counc., Lavenham Press, Ltd., Lavenham, Great Britain. 135 pp.
14. Gudin, C., Syratt, W. J., and Boize, L. 1976. The mechanisms of photosynthetic inhibition and the development of scorch in tomato plants treated with spray oils. Ann. Appl. Biol. 84:213219.
15. Hadaway, A. B. and Barlow, F. 1965. Studies on the deposition of oil drops. Ann. Appl. Biol. 55:267274.
16. Hanks, J. E. and McWhorter, C. G. 1991. Variables affecting the use of positive displacement pumps to apply herbicide in ultralow volume. Weed Technol. 5:111116.
17. Hess, F. D. and Falk, R. H. 1990. Herbicide deposition on leaf surfaces. Weed Sci. 38:280288.
18. Himel, C. M. and Moore, A. D. 1969. Spray droplet size in the control of spruce budworm, boll weevil, bollworm, and cabbage looper. J. Econ. Entomol. 62:916981.
19. Hull, H. M., Davis, D. G., and Stolzenberg, G. E. 1982. Action of adjuvants on plant surfaces. Pages 2627 in Hodgson, R. H., ed. Adjuvants for Herbicides. Weed Sci. Soc. Am., Champaign, IL.
20. Jeffree, C. E. 1988. The cuticle/epicuticular waxes and trichomes of plants, with reference to their structure, functions, and evolution. Pages 2364 in Juniper, B. E. and Southwood, R., eds. Insects and the Plant Surface. Edward Arnold, London.
21. Kurtz, E. B. Jr. 1950. The relation of the characteristics and yield of wax to plant age. Plant Physiol. 25:269278.
22. McWhorter, C. G. and Barrentine, W. L. 1988. Spread of paraffinic oil on leaf surfaces of johnsongrass (Sorghum halepense). Weed Sci. 36:111117.
23. McWhorter, C. G. and Paul, R. N. 1989. The involvement of silica cells in the production of wax filaments in johnsongrass (Sorghum halepense) leaves. Weed Sci. 37:458470.
24. McWhorter, C. G., Paul, R. N., and Barrentine, W. L. 1990. Morphology, development, and recrystallization of epicuticular waxes of johnsongrass (Sorghum halepense). Weed Sci. 38:2233.
25. McWhorter, C. G., Barrentine, W. L., and Hanks, J. E. 1992. Postemergence grass control with herbicides applied at ULV in paraffinic oil. Weed Technol. 6:262268.
26. Tulloch, A. P. and Weenink, R. O. 1969. Composition of the leaf wax of little club wheat. Can. J. Chem. 47:31193126.
27. Tulloch, A. P. and Hoffman, L. L. 1973. Leaf wax of oats. Lipids 8:617622.
28. Tulloch, A. P. and Hoffman, L. L. 1974. Epicuticular waxes of Secale cereale and Triticale hexaploide leaves. Phytochemistry 13:25352540.
29. Tulloch, A. P. and Hogge, J. R. 1978. Gas chromatographic-mass spectrometric analysis of B-diketone-containing plant waxes. J. Chrom. 157:291296.
30. Tulloch, A. P. and Bergter, L. 1980. Epicuticular wax composition of Echinochloa crusgalli . Phytochemistry 19:145146.
31. Van Overbeek, J. and Blondeau, R. 1954. Mode of action of phytotoxic oils. Weeds 3:5565.
32. Wenzel, R. N. 1936. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. (Ind. Edn.) 28:988994.
33. Wilson, H. P. and Ilnicki, R. D. 1968. Combinations of oils and surfactants for enhancing the postemergence activity of atrazine in corn. Proc. Northeast. Weed Control Conf. 22:110114.


Spread of Water and Oil Droplets on Johnsongrass (Sorghum halepense) Leaves

  • Chester G. Mcwhorter (a1), Clark Ouzts (a2) and James E. Hanks (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed