Skip to main content Accessibility help

Sex-specific markers for waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri)

  • Jacob S. Montgomery (a1), Ahmed Sadeque (a1), Darci A. Giacomini (a2), Patrick J. Brown (a3) and Patrick J. Tranel (a4)...


Waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] and Palmer amaranth (Amaranthus palmeri S. Watson) are troublesome weeds of row-crop production in the United States. Their dioecious reproductive systems ensure outcrossing, facilitating rapid evolution and distribution of resistances to multiple herbicides. Little is known, however, about the genetic basis of dioecy in Amaranthus species. In this work, we use restriction site–associated DNA sequencing (RAD-Seq) to investigate the genetic basis of sex determination in A. tuberculatus and A. palmeri. For each species, approximately 200 plants of each sex were sampled and used to create RAD-Seq libraries. The resulting libraries were separately bar-coded and then pooled for sequencing with the Illumina platform, yielding millions of 64-bp reads. These reads were analyzed to identify sex-specific and sex-biased sequences. We identified 345 male-specific sequences from the A. palmeri data set and 2,754 male-specific sequences in A. tuberculatus. An unexpected 723 female-specific sequences were identified in a subset of the A. tuberculatus females; subsequent research, however, indicated female specificity of these markers was limited to the population from which they were identified. Primer sets designed to specifically amplify male-specific sequences were tested for accuracy on multiple, geographically distinct populations of A. tuberculatus and A. palmeri, as well as other Amaranthus species. Two primer sets for A. palmeri and four primer sets for A. tuberculatus were each able to distinguish between male and female plants with at least 95% accuracy. In the near term, sex-specific markers will be useful to the A. tuberculatus and A. palmeri research communities (e.g., to predict sex for crossing experiments). In the long-term, this research will provide the foundational tools for detailed investigations into the molecular biology and evolution of dioecy in weedy Amaranthus species.


Corresponding author

Author for correspondence: Patrick J. Tranel, University of Illinois, 1201 W. Gregory Drive, Urbana, IL, 61801. Email:


Hide All

These authors contributed equally to this work.



Hide All
Adhikary, D, Pratt, DB (2015) Morphologic and taxonomic analysis of the weedy and cultivated Amaranthus hybridus species complex. Syst Bot 40:604610
Bachtrog, D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113124
Baird, NA, Etter, PD, Atwood, TS, Currey, MC, Shiver, AL, Lewis, ZA, Selker, EU, Cresko, WA, Johnson, EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376
Bolger, AM, Lohse, M, Usadel, B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:21142120
Bradbury, PJ, Zhang, Z, Kroon, DE, Casstevens, TM, Ramdoss, Y, Buckler, ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:26332635
Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K, Madden, TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421
Charlesworth, D, Mank, JE (2010) The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:931
Chen, K, Wang, Y, Zhang, R, Zhang, H, Gao, C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667697
Chikhi, R, Medvedev, P (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics 30:3137
Cummins, I, Wortley, DJ, Sabbadin, F, He, Z, Coxon, CR, Straker, HE, Sellers, JD, Knight, K, Edwards, L, Hughes, D, Kaundun, SS, Hutchins, SJ, Steel, PG, Edwards, R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA 110:58125817
Davey, JW, Blaxter, ML (2010) RAD-Seq: next-generation population genetics. Brief Funct Genomics 9:416423
Davis, AS, Schutte, BJ, Hager, AG, Young, BG (2015) Palmer amaranth (Amaranthus palmeri) damage niche in Illinois soybean is seed limited. Weed Sci 63:658668
Gaines, TA, Ward, SM, Bukun, B, Preston, C, Leach, JE, Westra, P (2012) Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species: interspecific transfer of glyphosate resistance. Evol Appl 5:2938
Glaubitz, JC, Casstevens, TM, Lu, F, Harriman, J, Elshire, RJ, Sun, Q, Buckler, ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346
Grant, WF (1959) Cytogenetic studies in Amaranthus. I. Cytological aspects of sex determination in dioecious species. Can J Bot 37:413417
Harkess, A, Zhou, J, Xu, C, Bowers, JE, Van der Hulst, R, Ayyampalayam, S, Mercati, F, Riccardi, P, McKain, MR, Kakrana, A, Tang, H, Ray, J, Groenenddijk, J, Arikit, S, Mathioni, S, Nakano, M, Shan, H, Telgmann-Rauber, A, Kanno, A, Yue, Z, Chen, H, Li, W, Chen, Y, Xu, X, Zhang, Y, Luo, S, Chen, H, Gao, J, Mao, A, Pires, JC, Luo, M, Kundra, D, Wing, RA, Meyers, BC, Yi, K, Kong, H, Lavrijsen, P, Sunseri, F, Falavigna, A, Ye, Y, Leebens-Mack, JH, Chen, G (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8:1279
Henry, IM, Akagi, T, Tao, R, Comia, L (2018) One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annu Rev Plant Biol 69:553575
Hothorn, T, Hornik, K, Van de Wiel, MA, Zeileis, A (2006) A Lego system for conditional inference. Am Stat 60:257263
Hothorn, T, Hornik, K, Van de Wiel, MA, Zeileis, A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw 28:123
Kafkas, S, Khodaeiaminjan, M, Güney, M, Kafkas, E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16:98
Kalendar, R, Khassenov, B, Ramankulov, Y, Samuilova, O, Ivanov, KI (2017) FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109:312319
Komai, F, Masuda, K (2004) Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tiss Org 78:285287
Kreiner, J, Giacomini, D, Waithaka, B, Bemm, F, Lanz, C, Hildebrandt, J, Regalado, J, Sikkema, P, Tranel, P, Weigel, D, Stinchcombe, J, Wright, S (2018) Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Accessed: January 15, 2019.
Luo, R, Liu, B, Xie, Y, Li, Z, Huang, W, Yuan, J, He, G, Chen, Y, Pan, Q, Liu, Y, Tang, J, Wu, G, Zhang, H, Shi, Y, Liu, Y, Yu, C, Wang, B, Lu, Y, Han, C, Cheung, DW, Yiu, SM, Peng, S, Xiaoqian, Z, Liu, G, Liao, X, Li, Y, Yang, H, Wang, J, Lam, TW, Wang, J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18
Murray, MJ (1940) The genetics of sex determination in the family Amaranthaceae. Genetics 25:409431
National Academies of Sciences, Engineering, and Medicine (2016) Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington, DC: National Academies Press. Pp 5658
Neve, P (2018) Gene drive systems: do they have a place in agricultural weed management? Pest Manag Sci 74:26712679
Palaiokostas, C, Bekaert, M, Davie, A, Cowan, ME, Oral, M, Taggart, JB, Gharbi, K, McAndrew, BJ, Penman, DJ, Migaud, H (2013) Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genomics 14:566
Poland, JA, Brown, PJ, Sorrells, ME, Jannink, JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253
Puterova, J, Kubat, Z, Kejnovsky, E, Jesionek, W, Cizkova, J, Vyskot, B, Hobza, R (2018) The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons. BMC Genomics 19:153
Sauer, JD (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:1131
Stetter, MG, Schmid, KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:8092
ThermoFisher Scientific (n.d.) Primer Designer Tool for PCR & Sanger Sequencing. Accessed: March 1, 2018.
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812
Tranel, PJ, Trucco, F (2009) 21st-century weed science: a call for Amaranthus genomics. Pages 5381 in Stewart, CN Jr, ed. Weedy and Invasive Plant Genomics. Ames, IA: Blackwell
Trucco, F, Tatum, T, Rayburn, AL, Tranel, PJ (2009) Out of the swamp: unidirectional hybridization with weedy species may explain the prevalence of Amaranthus tuberculatus as a weed. New Phytol 184:819827
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:1227
Waselkov, KE, Olsen, KM (2014) Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus; Amaranthaceae). Am J Bot 101:17261736
Wu, C, Davis, AS, Tranel, PJ (2018) Limited fitness costs of herbicide-resistance traits in Amaranthus tuberculatus facilitate resistance evolution: fitness costs of herbicide resistance. Pest Manag Sci 74:293301
Xin, Z, Chen, J (2012) A high throughput DNA extraction method with high yield and quality. Plant Methods 8:26
You, FM, Huo, N, Gu, Y, Luo, M, Ma, Y, Hane, D, Lazo, GR, Dvorak, J, Anderson, OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253
Yu, Q, Powles, S (2014) Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol 166:11061118


Sex-specific markers for waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri)

  • Jacob S. Montgomery (a1), Ahmed Sadeque (a1), Darci A. Giacomini (a2), Patrick J. Brown (a3) and Patrick J. Tranel (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed