Skip to main content Accessibility help

Sampling the Waterhemp (Amaranthus tuberculatus) Genome Using Pyrosequencing Technology

  • Ryan M. Lee (a1), Jyothi Thimmapuram (a2), Kate A. Thinglum (a1), George Gong (a2), Alvaro G. Hernandez (a2), Chris L. Wright (a2), Ryan W. Kim (a2), Mark A. Mikel (a3) and Patrick J. Tranel (a1)...


Recent advances in sequencing technologies (next-generation sequencing) offer dramatically increased sequencing throughput at a lower cost than traditional Sanger sequencing. This technology is changing genomics research by allowing large scale sequencing experiments in nonmodel systems. Waterhemp is an important weed in the midwestern United States with characteristics that makes it an interesting ecological model. However, very few genomic resources are available for this species. One half of a 70 by 75 picotiter plate of 454-pyrosequencing was performed on total DNA isolated from waterhemp, generating 158,015 reads of an average length of 271 bp, or a total of nearly 43 Mbp of sequence. Included in this sequence was a nearly complete sequence of the chloroplast genome, sequences of several important herbicide resistance genes, leads for simple sequence repeat (SSR) markers, and a sampling of the repeated elements (e.g., transposons) present in this species. Here we present the waterhemp genomic data gleaned from this sequencing experiment and illustrate the value of next-generation sequencing technology to weed science research.


Corresponding author

Corresponding author's E-mail:


Hide All
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
Arabidopsis Genome Initiative 2000. Analysis of the genome of the flowering plant Arabidopsis thaliana . Nature. 408:796815.
Ashburner, M., Ball, C. A., Blake, J. A., et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25:2529.
Bennetzen, J. L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42:251269.
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:1315.
Finnegan, D. J. 1992. Transposable elements. Curr. Opin. Genet. Dev. 2:861867.
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.
Heap, I. 2008. International Survey of Herbicide Resistant Weeds. Accessed: December 15, 2008.
Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., and Mikami, T. 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 28:25712576.
Lee, J. R., Hong, G. Y., Dixit, A., et al. 2008. Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conserv. Genet. 9:243246.
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.
Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O., and Borodovsky, M. 2005. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33:64946506.
Lonsdale, D. M., Hodge, T. P., Howe, C. J., and Stern, D. B. 1983. Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell. 34:10071014.
Mallory, M. A., Hall, R. V., McNabb, A. R., Pratt, D. B., Jellen, E. N., and Maughan, P. J. 2008. Development and characterization of microsatellite markers for the grain amaranths. Crop Sci. 48:10981106.
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by sites of action for weed resistance management strategies. Weed Technol. 17:605619.
Margulies, M., Egholm, M., Altman, W. E., et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437:376380.
Maughan, P. J., Sisneros, N., Luo, M., Kudrna, D., Ammiraju, J. S. S., and Wing, R. A. 2008. Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. Crop Sci. 48:S85S94.
McClintock, B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16:1347.
McClintock, B. 1984. The significance of responses of the genome to challenge. Science. 226:792801.
Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., and Kadowaki, K. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics. 268:434445.
Palmer, J. D., Adams, K. L., Cho, Y., Parkinson, C. L., Qiu, Y. L., and Song, K. 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. USA. 97:69606966.
Patzoldt, W. L., Hager, A. G., McCormick, J. S., and Tranel, P. J. 2006. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. USA. 103:1232912334.
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.
Rayburn, A. L., McCloskey, R., Tatum, T. C., Bollero, G. A., Jeschke, M. R., and Tranel, P. J. 2005. Genome size analysis of weedy Amaranthus species. Crop Sci. 45:25572562.
Rounsley, S., Marri, P. R., Yu, Y., et al. 2009. De novo next generation sequencing of plant genomes. Rice. 2:3543.
Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M., and Smith, M. 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 265:687695.
SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., and Bennetzen, J. L. 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20:4345.
SanMiguel, P., Tikhonov, A., Jin, Y. K., et al. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science. 274:765768.
Schmitz-Linneweber, C., Maier, R. M., Alcaraz, J. P., Cottet, A., Herrmann, R. G., and Mache, R. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45:307315.
Sugiura, M. 2003. History of chloroplast genomics. Photosynth. Res. 76:371377.
Turcotte, K., Srinivasan, S., and Bureau, T. 2001. Survey of transposable elements from rice genomic sequences. Plant J. 25:169179.
Unseld, M., Marienfeld, J. R., Brandt, P., and Brennicke, A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 15:5761.
Vera, J. C., Wheat, C. W., Fescemyer, H. W., Frilander, M. J., Crawford, D. L., Hanski, I., and Marden, J. H. 2008. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol. Ecol. 17:16361647.
Vitte, C. and Bennetzen, J. L. 2006. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA. 103:1763817643.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed