Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:33:32.228Z Has data issue: false hasContentIssue false

Resistance to Chlorotoluron of a Slender Foxtail (Alopecurus myosuroides) Biotype

Published online by Cambridge University Press:  12 June 2017

Julio Menendez
Affiliation:
Universidad de Córdoba. Aptdo. 3048, 14080, Córdoba, Spain. Address correspondence to Rafael De Prado
Jesus Jorrin
Affiliation:
Universidad de Córdoba. Aptdo. 3048, 14080, Córdoba, Spain. Address correspondence to Rafael De Prado
Eva Romera
Affiliation:
Universidad de Córdoba. Aptdo. 3048, 14080, Córdoba, Spain. Address correspondence to Rafael De Prado
Rafael De Prado
Affiliation:
Grupo de Investigación Bioquímica Vegetal y Agrícola, ETSIAM, Universidad de Córdoba. Aptdo. 3048, 14080, Córdoba, Spain. Address correspondence to Rafael De Prado

Abstract

The effect of chlorotoluron on different slender foxtail populations that survived normal agricultural rates of this herbicide (2.5 to 3.5 kg ai ha–1) was investigated under controlled laboratory conditions. Among five populations tested, two had tolerance for the herbicide. The ED50 values for these biotypes ranged from 0.33 to 2.43 kg ha–1. Assays with radiolabeled 14C-chlorotoluron indicated similar absorption and translocation of the herbicide between susceptible and resistant biotypes. Chlorophyll fluorescence and Hill reaction analysis seem to support the view that the mechanism of resistance of one biotype to the herbicide is due to degradation/detoxification rather than to modification of the target site, although compartmentation processes cannot be ruled out. This resistant biotype had high tolerance to other photosynthetic inhibiting phenylureas, including linuron, chlorbromuron, diuron, monolinuron, and neburon.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed. Sci. 29:316322.CrossRefGoogle Scholar
2. Canivenc, M. C., Cagnac, B., Cabanne, F., and Scalla, R. 1989. Induced changes in chlorotoluron metabolism in wheat cell suspension cultures. Plant Physiol. Biochem. 27:193201.Google Scholar
3. Caseley, J. C., Kueh, J., Jones, O. T., Hedden, P., and Cross, A. R. 1990. Mechanism of chlorotoluron resistance in Alopecurus myosuroides . Abstr. 7th Int. Congr. Pestic. Chem. 1, Frehse, H., Kesseler-Schmitz, E., and Conway, S., eds. Page 417 in IUPAC. Hamburg.Google Scholar
4. Chauvel, B. and Gasquez, J. 1990. Resistance aux urées substituées: le cas du vulpin. Defense des Vegetaux, 263:2227.Google Scholar
5. De Prado, R., Diaz, M. A., and Tena, M. 1990. Differential tolerance to atrazine in four Setaria species. Proc. EWRS Symp. 1990. 1:6168.Google Scholar
6. De Prado, R., Domínguez, C., and Tena, M. 1989. Characterization of triazine-resistant biotypes of common lambsquarters (Chenopodium album), hairy fleabane (Conyza bonaeriensis), and yellow foxtail (Setaria glauca) found in Spain. Weed Sci. 37:14.CrossRefGoogle Scholar
7. De Prado, R., Domínguez, C., and Tena, M. 1993. Triazine resistance in biotypes of Solanum nigrum and four Amaranthus species found in Spain. Weed Res. 33:1724.CrossRefGoogle Scholar
8. De Prado, R., Scalla, R., and Gaillardon, P. 1990. Differential toxicity of simazine and diuron to Torilis arvensis and Lolium rigidum . Weed Res. 30:213221.CrossRefGoogle Scholar
9. Ducruet, J. M. and De Prado, R. 1982. Comparison of inhibitory activity of amide derivatives in triazine resistant and susceptible chloroplast from Chenopodium album and Brassica campestris . Pestic. Biochem. Physiol. 18:253261.CrossRefGoogle Scholar
10. Ducruet, J. M., Gaillardon, P., and Viernot, J. 1984. Use of chlorophyll fluorescence kinetics to study translocation and detoxification of DCMU-type herbicides in plant leaves. Z. Naturforsch. 39c:354358.CrossRefGoogle Scholar
11. Gonneau, M., Pasquette, B., Cabanne, F., and Scalla, R. 1988. Metabolism of chlorotoluron in tolerant species: possible role of cytochrome P-450 mono-oxygenases. Weed Res. 28:1925.CrossRefGoogle Scholar
12. Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461348.CrossRefGoogle ScholarPubMed
13. Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6:615620.CrossRefGoogle Scholar
14. Jorrín, J., Menéndez, J., Romera, E., Taberner, A., Tena, M., and De Prado, R. 1992. Chlorotoluron resistance in a blackgrass (Alopecurus myosuroides) biotype is due to herbicide detoxification. Proc. 1992 Gent Crop Prot. Conf. Weed 57(3b):10471052.Google Scholar
15. Kemp, M. S., Moss, S. R., and Thomas, T. H. 1990. Herbicide resistance in Alopecurus myosuroides . Pages 376393 in Gree, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
16. Moss, S. R. 1987. Herbicide resistance in black-grass (Alopecurus myosuroides). Proc. 1987 Br. Crop Prot. Conf.-Weeds 879886.Google Scholar
17. Moss, S. R. 1990. Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci. 38:492496.CrossRefGoogle Scholar
18. Moss, S. R. and Cussans, G. W. 1985. Variability in the susceptibility of Alopecurus myosuroides (black-grass) to chlorotoluron and isoproturon. Aspects Appl. Biol. 9:9198.Google Scholar
19. Moss, S. R. and Cussans, G. W. 1987. Detection and practical significance of herbicide resistance with particular reference to the weed Alopecurus myosuroides (black-grass). Pages 200213 in Ford, M., Hollomon, D., Khambay, B., and Sawicki, R., eds. Combating Resistance to Xenobiotics: Biological and Chemical Approaches. Ellis Horwood, Chichester.Google Scholar
20. Moss, S. R. and Kemp, M. S. 1989. The occurrence of herbicide-resistant weeds in the United Kingdom, with particular reference to Alopecurus myosuroides . Pages 5766 in Cavalloro, R. and Noye, G., eds. Importance and Perspectives on Herbicide Resistant Weeds. Commission of the European Communities. Brussels.Google Scholar
21. Moss, S. R. and Orson, J. H. 1988. The distribution of herbicide-resistant Alopecurus myosuroides (black-grass) in England. Aspects Appl. Biol. 18:177185.Google Scholar
22. Mougin, C. 1990. Metabolisme oxydatif du chlorotoluron chez des cultures cellulaires de blé: intervention de monoxygénases á cytochrome P-450. Ph.D. Thesis. Inst. Nat. Polytechnique de Toulouse. Toulouse, France.Google Scholar
23. Mougin, C., Cabanne, F., Canivenc, M. C., and Scalla, R. 1990. Hydroxylation and N-demethylation of chlorotoluron by wheat microsomal enzymes. Plant Sci. 66: 195203.CrossRefGoogle Scholar
24. Niemans, P. and Pestemer, W. 1984. Resistenz verschiedener Herkunfte von Acker-Fuchsschwanz (Alopecurus myosuroides) gegenuber Herbizidbehandlungen. Nachrich. Deuts. Pflanzen. 36:113118.Google Scholar
25. Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplast isolated from species either susceptible or resistant toward s-triazine herbicides. Pestic. Biochem. Physiol. 18:357367.CrossRefGoogle Scholar
26. Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18:614616.CrossRefGoogle Scholar
27. Ryan, P. J., Gross, D., Owen, W. J., and Loani, T. L. 1981. The metabolism of chlorotoluron, diuron and CGA 43057 in tolerant and susceptible plants. Pestic. Biochem. Physiol. 16:213221.CrossRefGoogle Scholar
28. Tanaka, Y., Chisaka, H., and Saka, M. 1986. Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. canadensis . Physiol. Plant. 66:605608.CrossRefGoogle Scholar