Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-09T02:13:03.203Z Has data issue: false hasContentIssue false

Relative Phytotoxicities of Dinitroaniline Herbicides

Published online by Cambridge University Press:  12 June 2017

R. G. Harvey*
Affiliation:
Dep. of Agron., Univ. of Wisconsin, Madison, WI 53706

Abstract

The relative phytotoxicities of 12 substituted dinitroaniline herbicides to soybeans [Glycine max (L.) Merr ‘Corsoy’], velvetleaf (Abutilon theophrasti Medic.), and either giant foxtail (Setaria faberi Herrm.) or foxtail millet [Setaria italica (L.) Beauv.] were compared under greenhouse and laboratory conditions. In these studies, dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) was most toxic to each species. Dinitramine, trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), and BAS-3921 H [N-propyl-N-(2-chloroethyl)-α,α,α-trifluoro-2,6-dinitro-p-toluidine] were most inhibitory of soybean shoot growth, while oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide), dinitramine, and BAS-3921 H were most inhibitory of root growth. Similarly, dinitramine, oryzalin, nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline], and BAS-3921 H inhibited velvetleaf shoot growth; and oryzalin, dinitramine, chlornidine [2,6-dinitro-N,N-di(2-dichloroethyl)-p-toluidine], nitralin, and GS-39985 (N-n-propyl-N-tetrahydrofurfuryl-4-trifluoromethyl-2,6-dinitroaniline) reduced root growth. All of the herbicides except oryzalin and nitralin inhibited foxtail millet shoot growth, while all of the herbicides reduced root growth.

Type
Research Article
Copyright
Copyright © 1973 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anderson, W. P., Richards, A. B., and Whitworth, J. W. 1968. Leaching of trifluralin, benefin, and nitralin in soil columns. Weed Sci. 16:165169.Google Scholar
2. Barrentine, W. L. and Warren, G. F. 1971. Differential phytotoxicity of trifluralin and nitralin. Weed Sci. 19: 3137.Google Scholar
3. Harvey, R. G. 1973. Influence of cropping and activated carbon on persistence of atrazine in sand. Weed Sci. 21: (In press).CrossRefGoogle Scholar
4. Harvey, R. G. 1973. Field comparison of twelve dinitroaniline herbicides. Weed Sci. 21:(This issue).Google Scholar
5. Harvey, R. G. and Muzik, T. J. 1973. Effects of 2,4-D and amino acids on field bindweed in vitro. Weed Sci. 21:135138.CrossRefGoogle Scholar
6. Hilton, J. L. and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20: 290294.Google Scholar
7. Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Calif. Agr. Exp. Sta. Circ. 347, 32 pp.Google Scholar
8. Hollist, R. L. and Foy, C. L. 1971. Trifluralin interactions with soil constituents. Weed Sci. 19:1116.Google Scholar
9. Lignowski, E. M. and Scott, E. G. 1971. Trifluralin and root growth. Plant Cell Physiol. 7:701708.Google Scholar
10. Murray, D. S., Santelmann, P. W., and Greer, H. A. L. 1973. Differential phytotoxicity of several dinitroaniline herbicides. Agron. J. 65:3436.CrossRefGoogle Scholar
11. Scott, H. D. and Phillips, R. E. 1972. Diffusion of selected herbicides in soil. Soil Sci. Soc. Amer. Proc. 36:714719.Google Scholar
12. Swann, C. W. and Behrens, R. 1972. Phytotoxicity of trifluralin vapors from soil. Weed Sci. 20:143146.Google Scholar
13. Weber, J. B. and Monaco, T. J. 1972. Review of the chemical and physical properties of the substituted dinitroaniline herbicides. Proc. S. Weed Sci. Soc. 25:3137.Google Scholar