Skip to main content Accessibility help
×
Home

Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization

  • Steven S. Seefeldt, Robert Zemetra (a1), Frank L. Young (a2) and Stephen S. Jones (a3)

Abstract

Imazamox-resistant hybrids resulted from a cross between jointed goatgrass and an imazamox-resistant wheat (cv. FS-4 IR wheat). Two imazamox-resistant hybrids were discovered in a research plot where FS-4 IR wheat seed had been replanted from the harvest of an imazamox efficacy study conducted the year before at a different location. These hybrid plants survived imazamox applied at 0.053 and 0.069 kg ai ha−1 in the field and produced seven viable seeds (BC1). This seed germinated, and chromosomes were counted from the roots (2N number ranged from 39 to 54). In the greenhouse, six of the seven plants survived an application of 0.072 kg ai ha−1imazamox, which confirmed that the resistance trait had been passed to these progeny. A large amount of phenotypic variation was observed in the mature BC1 plants. A genetic description of the movement of the resistant gene is proposed based on the case of the gene being located on the D and the A or B genomes. Management strategies to reduce the occurrence of herbicide-resistant hybrids are presented.

Copyright

Corresponding author

Corresponding author. USDA/ARS, Washington State University, Pullman, WA 99164; seefeldt@wsu.edu;

Footnotes

Hide All

Current address: AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand; seefeldts@agresearch.cri.nz

Footnotes

References

Hide All
Ball, D. A., Young, F. L., and Ogg, A. G. Jr. 1999. Selective control of jointed goatgrass with imazamox in herbicide-resistant wheat. Weed Technol. In review.
Brown, J. and Brown, A. P. 1996. Gene transfer between canola (Brassica napus L. and B. campestris L.) and related weed species. Ann. Appl. Biol. 129: 513522.
Brown, J., Thill, D. C., Mallory-Smith, C., Brown, A. P., Brammer, T. A., and Nair, H. S. 1995. Gene transfer between canola (Brassica napus L.) and related weed species. Pages 5574 in Proceedings of the USDA/ARS Biological Risk Conference. Biotechnology Risk Assessment: USEPA/USDA/Environment Canada/Agriculture and Agriculture Food Canada, USDA/ARS, Pensacola, FL, June 6–8, 1995.
Harrison, H. F. Jr. 1992. Developing herbicide-tolerant crop cultivars: introduction. Weed Technol. 6: 613614.
Johnston, C. O. and Parker, J. H. 1929. Aegilops cylindrica Host, a wheat-field weed in Kansas. Trans. Kans. Acad. Sci. 32: 8084.
Kimber, G. and Sears, E. R. 1987. Evolution in the genus Triticum and the origin of cultivated wheat. Pages 154164 in Heyne, E. G., ed. Wheat and Wheat Improvement. Agronomy Monogr. 13. Madison, WI: Tri-Societies.
Mayfield, L. 1927. Goat grass—a weed pest of central Kansas wheat fields. Kans. Agric. Student 7: 4041.
White, R. H. and Morrison, R. A. 1998. IMI® wheat: new weed management technology. Proc. West. Soc. Weed Sci. 51: 106107.
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) . Weed Sci. 46: 313317.

Keywords

Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization

  • Steven S. Seefeldt, Robert Zemetra (a1), Frank L. Young (a2) and Stephen S. Jones (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed