Skip to main content Accessibility help

Phenology of Five Palmer amaranth (Amaranthus palmeri) Populations Grown in Northern Indiana and Arkansas

  • Douglas J. Spaunhorst (a1), Pratap Devkota (a2), William G. Johnson (a3), Reid J. Smeda (a4), Christopher J. Meyer (a5) and Jason K. Norsworthy (a6)...


Palmer amaranth (Amaranthus palmeri S. Watson) is a problematic weed encountered in U.S. cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] production, with infestations spreading northward. This research investigated the influence of planting date (early, mid-, and late season) and population (AR, IN, MO, MS, NE, and TN) on A. palmeri growth and reproduction at two locations. All populations planted early or midseason at Throckmorton Purdue Agricultural Center (TPAC) and Arkansas Agriculture Research and Extension Center (AAREC) measured 196 and 141 cm or more, respectively. Amaranthus palmeri height did not exceed 168 and 134 cm when planted late season at TPAC and AAREC, respectively. Early season planted A. palmeri from NE grew to 50% of maximum height 8 to 13 d earlier than all other populations under TPAC conditions. In addition, the NE population planted early, mid-, and late season achieved 50% inflorescence emergence 5, 4, and 6 d earlier than all other populations, respectively. All populations established at TPAC produced fewer than 100,000 seeds plant−1. No population planted at TPAC and AAREC produced more than 740 and 1,520 g plant−1 of biomass at 17 and 19 wk after planting, respectively. Planting date influenced the distribution of male and female plants at TPAC, but not at AAREC. Amaranthus palmeri from IN and MS planted late season had male-to-female plant ratios of 1.3:1 and 1.7:1, respectively. Amaranthus palmeri introduced to TPAC from NE can produce up to 7,500 seeds plant−1 if emergence occurs in mid-July. An NE A. palmeri population exhibited biological characteristics allowing it to be highly competitive if introduced to TPAC due to a similar latitudinal range, but was least competitive when introduced to AAREC. Although A. palmeri originating from different locations can vary biologically, plants exhibited environmental plasticity and could complete their life cycle and contribute to spreading populations.


Corresponding author

Author for correspondence: Douglas J. Spaunhorst, Research Agronomist, USDA-ARS, SRU, 5883 USDA Road, Houma, LA 70360. (Email:


Hide All
Archontoulis, SV, Miguez, FE (2015) Nonlinear regression models and applications in agriculture research. Agron J 107:786798
Bell, MS, Tranel, PJ (2010) Time requirement from pollination to seed maturity in waterhemp (Amaranthus tuberculatus). Weed Sci 58:167173
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743
Bond, JA, Oliver, LR (2006) Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions. Weed Sci 54:121126
Brosofske, KD, Chen, J, Crow, TP (2001) Understory vegetation and site factors: implications for a managed Wisconsin landscape. For Ecol Manag 146:7587
Bryson, CT, DeFelice, MS, eds (2009) Weeds of the South. Athens: University of Georgia Press. 468 p
Cidecydan, MA, Malloch, AJC (1982) Effects of seed size on the germination, growth and competitive ability of Rumex crispus and Rumex obtusifolius . J Ecol 70:227232
Costea, M, Weaver, SE, Tardif, FJ (2005) The biology of invasive alien plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Can J Plant Sci 85:507522
Davis, AS, Schutte, BJ, Hager, AG, Young, BG (2015) Palmer amaranth (Amaranthus palmeri) damage niche in Illinois soybean is seed limited. Weed Sci 63:658668
Farmer, JA, Webb, EB, PierceII, RA II, RA, Bradley, KW (2017) Evaluating the potential for weed seed dispersal based on waterfowl consumption and seed viability. Pest Manage Sci 73:25922603
Gilmore, EC Jr, Rogers, JS (1958) Heat units as a method of measuring maturity in corn. Agron J 50:611615
Givens, WA, Shaw, DR, Kruger, GR, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK, Jordan, D (2009) Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol 23:150155
Griffith, TM, Watson, MA (2006) Is evolution necessary for range expansion? Manipulating reproductive timing of a weedy annual transplanted beyond its range. Am Nat 167:153164
Guo, P, Al-Khatib, K (2003) Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (Amaranthus rudis). Weed Sci 51:869875
Heneghan, JM, Johnson, WG (2017) The growth and development of five waterhemp (Amaranthus tuberculatus) populations in a common garden. Weed Sci 65:247255
Horak, MJ, Loughlin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355
Huang, JZ, Shrestha, A, Tollenaar, M, Deen, W, Rahimian, H, Swanton, CJ (2000) Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Can J Plant Sci 80:929938
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651
Jha, P, Norsworthy, JK, Garcia, J (2014) Depletion of an artificial seed bank of Palmer amaranth (Amaranthus palmeri) over four years of burial. Am J Plant Sci 5:15991606
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204
Klingaman, TE, Oliver, LR (1994) Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527
Li, RH, Qiang, S (2009) Composition of floating weed species in lowland rice fields in China and the effects of irrigation frequency and previous crops. Weed Res 49:417427
Loux, M (2017) Fight Palmer Amaranth from Spreading. Accessed: January 2, 2018
Massinga, RA, Currie, RS, Horak, MJ, Boyer, J Jr (2001) Interference of Palmer amaranth in corn. Weed Sci 49:202208
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62:237249
Norsworthy, JK, Smith, KL, Steckel, LE, Koger, CH (2009) Weed seed contamination of cotton gin trash. Weed Technol 23:574580
Sauer, JD (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:1131
Schultz, JL, Chatham, LA, Riggins, CW, Tranel, PJ, Bradley, KW (2015) Distribution of herbicide resistance and molecular mechanisms conferring resistance in Missouri waterhemp (Amaranthus rudis Sauer) populations. Weed Sci 63:336345
Schwartz, LM, Norsworthy, JK, Young, BG, Bradley, KW, Kruger, GR, Davis, VM, Steckel, LE, Walsh, MJ (2016) Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol 30:284290
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333
Sprague, CL (2014) Palmer Amaranth: Managing This New Weed Problem. Accessed: January 2, 2018
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570
Uva, RH, Neal, JC, DiTomaso, JM (1997) Weeds of the Northeast. New York: Cornell University Press. Pp 9097


Phenology of Five Palmer amaranth (Amaranthus palmeri) Populations Grown in Northern Indiana and Arkansas

  • Douglas J. Spaunhorst (a1), Pratap Devkota (a2), William G. Johnson (a3), Reid J. Smeda (a4), Christopher J. Meyer (a5) and Jason K. Norsworthy (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed