Skip to main content Accessibility help

Persistence and Movement of Fomesafen in Florida Strawberry Production

  • Thomas V. Reed (a1), Nathan S. Boyd (a2), P. Christopher Wilson (a3), Peter J. Dittmar (a4) and Shaun M. Sharpe (a5)...


Fomesafen is a protoporphyrinogen oxidase–inhibitor herbicide with an alternative mode of action that provides PRE weed control in strawberry [Fragaria×ananassa (Weston) Duchesne ex Rozier (pro sp.) [chiloensis×virginiana]] produced in a plasticulture setting in Florida. Plasticulture mulch could decrease fomesafen dissipation and increase crop injury in rotational crops. Field experiments were conducted in Balm, FL, to investigate fomesafen persistence and movement in soil in Florida strawberry systems for the 2014/2015 and 2015/2016 production cycles. Treatments included fomesafen preplant at 0, 0.42, and 0.84 kg ai ha−1. Soil samples were taken under the plastic from plots treated with fomesafen at 0.42 kg ha−1 throughout the production cycle. Fomesafen did not injure strawberry or decrease yield. Fomesafen concentration data for the 0.0- to 0.1-m soil depth were described using a three-parameter logistic function. The fomesafen 50% dissipation times were 37 and 47 d for the 2014/2015 and 2015/2016 production cycles, respectively. At the end of the study, fomesafen was last detected in the 0.0- to 0.1-m depth soil at 167 and 194 d after treatment in the 2014/2015 and 2015/2016 production cycles, respectively. Fomesafen concentration was less than 25 ppb on any sampling date for 0.1- to 0.2-m and 0.2- to 0.3-m depths. Fomesafen concentration decreased significantly after strawberry was transplanted and likely leached during overhead and drip irrigation used during the crop establishment.


Corresponding author

Author for correspondence: Nathan S. Boyd, University of Florida, Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma FL 33598. (Email:


Hide All
Ambrosio, DD, Di Gregorio, S, Gabriele, S Gaudio, R (2001) A cellular automata model for soil erosion by water. Phys Chem Earth 26:3339
Anonymous, (2011) Stinger® supplemental labeling for annual strawberry in Florida. Indianapolis, IN: Dow AgroSciences LLC. 3 p
Beale, SI Weinstein, JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. Pages 287391 in Dailey HA, ed. Biosynthesis of Heme and Chlorophylls. New York: McGraw-Hill
Bond, W Walker, A (1989) Aspects of herbicide activity and persistence under low level polyethylene covers. Ann Appl Biol 114:133140
Boyd, NS Reed, T (2016) Strawberry tolerance to bed top and drip-applied preemergence herbicides. Weed Technol 30:492498
Carter, AD (2000) Herbicide movement in soils: principles, pathways and processes. Weed Res 40:113122
Cobucci, T, Prates, HT, Falcão, CLM Rezende, MMV (1998) Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci 46:258263
Duke, SO, Lydon, J, Becerril, JM, Sherman, TD, Lehnen, LP Matsumoto, H (1991) Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 39:465473
Grey, TL, Vencill, WK, Mantripagada, N Culpepper, AS (2007) Residual herbicide dissipation from soil covered with low-density polyethylene mulch or left bare. Weed Sci 55:638643
Grimm, B (1999) The metabolic pathway of tetrapyrrole biosynthesis. Pages 211244 in Boger P, Wakabayashi K, eds. Peroxidizing Herbicides. New York: Springer-Verlag
Guo, J, Zhu, G, Shi, J Sun, J (2003) Adsorption, desorption and mobility of fomesafen in Chinese soils. Water Air Soil Pollut 148:7785
Herman, RA Scherer, PN (2003) Comparison of linear and nonlinear regression for modeling the first-order degradation of pest-control substances in soil. J Agric Food Chem 51:47224726
Jensen, KIN, Kimball, ER Ricketson, CL (1989) Effect of a plastic row tunnel and soil mulch on tomato performance, weed control and herbicide persistence. Can J Plant Sci 69:10551062
Leung, SC (1997) Fomesafen: Determination of Fomesafen in Soil and Water (WRC-97-110). Zeneca Report TMR0741B. Richmond, CA: Zeneca Ag Products. 21p
Li, X (2014) Evaluation of Efficacy, Soil Behavior and Dissipation of Herbicides in Agronomic Crops. Ph.D dissertation. Athens, GA: University of Georgia. 176 p
Lin, K (2009) Analytical Method for the Determination of Residues of Fomesafen in Crop Commodities by LC-MS/MS. Syngenta Report GRM045.01A. Greensboro, NC: Syngenta Crop Protection, Inc. 38p
McGuire, JA Pitts, JA (1991) Broadleaf weed control in strawberries with postemergence applied diphenyl ether herbicides. J Amer Soc Hort Sci 116:669671
Miller, MR Dittmar, PJ (2014) Effect of PRE and POST-directed herbicides for season-long nutsedge control in bell pepper. Weed Technol 28:518526
Monday, TA, Foshee, WG III, Blythe, EK, Wehtje, GR Gilliam, CH (2015) Yellow nutsedge (Cyperus esculentus) control and tomato response to application methods of drip-applied herbicides in polyethylene-mulched tomato. Weed Technol 29:625632
Mueller, TC, Boswell, BW, Mueller, SS Steckel, LE (2014) Dissipation of fomesafen, saflufenacil, sulfentrazone, and flumioxazin from a Tennessee soil under field conditions. Weed Sci 62:664671
Rauch, BJ, Bellinder, RR, Brainard, DC, Lane, M Thies, JE (2007) Dissipation of fomesafen in New York State soils and potential to cause carryover injury to sweet corn. Weed Technol 21:206212
Reed, T (2017) Fomesafen Persistence, Movement, and Efficacy for Nutsedge Control in Florida Plasticulture Production. Ph.D dissertation. University of Florida, Gainesville, FL: University of Florida. 125p
Reed, TV, Boyd, NS, Wilson, PC Dittmar, PJ (2018) Effect of fumigation with 1,3-Dichloropropene and chloropicrin on fomesafen dissipation in eggplant plasticulture production. Weed Sc 66:254259
Scalla, R Matringe, M (1994) Inhibition of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching herbicides. Rev Weed Sci 6:103132
Shaner, DL, ed (2014) Herbicide Handbook. 10th ed. Lawrence, KS: Weed Science Society of America. Pp 13, 232233
Sharpe, SM, Boyd, NS Dittmar, PJ (2016) Clopyralid dose response for two black medic (Medicago lupulina) growth stages. Weed Technol 30:717724
Sharpe, SM, Boyd, NS, Dittmar, PJ, MacDonald, GE, Darnell, RL Ferrell, JA (2018) Spray penetration into a strawberry canopy as affected by canopy structure, nozzle type, and application volume. Weed Technol 32:8084
Sosnoskie, LM, Kichler, JM, Wallace, RD Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci 59:321325
Weber, JB (1993a) Ionization and sorption of fomesafen and atrazine by soils and soil constituents. Pestic Sci 39:3138
Weber, JB (1993b) Mobility of fomesafen and atrazine in soil columns under saturated and unsaturated flow conditions. Pestic Sci 39:3946
Whitaker, VM, Boyd, NS, Peres, NA Smith, HA (2015) Strawberry production. Pages 189199 in Dittmar PJ, Freeman JH, Vallad GE, eds. Vegetable Production Handbook of Florida 2015–2016. Gainesville, FL: University of Florida/IFAS Extension
Yu, J Boyd, NS (2017) Weed control with and strawberry tolerance to herbicides applied through drip irrigation. Weed Technol 31:870876


Related content

Powered by UNSILO

Persistence and Movement of Fomesafen in Florida Strawberry Production

  • Thomas V. Reed (a1), Nathan S. Boyd (a2), P. Christopher Wilson (a3), Peter J. Dittmar (a4) and Shaun M. Sharpe (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.