Skip to main content Accessibility help

Non–target site based resistance to the ALS-inhibiting herbicide mesosulfuron-methyl in American sloughgrass (Beckmannia syzigachne)

  • Mingliang Wang (a1), Bingqi Liu (a1), Yihui Li (a1), Xiaoyong Luo (a2) and Lingxu Li (a3)...


American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] is one of the most predominant and troublesome weeds in wheat (Triticum aestivum L.) fields rotated with rice (Oryza sativa L.) in China. Mesosulfuron-methyl is one of the main herbicides used to selectively control B. syzigachne in winter wheat fields in China. After many years of application, mesosulfuron-methyl failed to control B. syzigachne in Yutai County. The objectives of this study were to determine the resistance level to mesosulfuron-methyl and other acetolactate synthase (ALS) inhibitors in the B. syzigachne population collected from Yutai County (R) and identify the mechanism of resistance. The results indicated that the R population was 4.1-fold resistant to mesosulfuron-methyl and was cross-resistant to pyroxsulam (600-fold), imazethapyr (4.1-fold), flucarbazone (12-fold), and bispyribac-sodium (12-fold). In vitro assays revealed that ALS in the R population was as sensitive as that in a susceptible (S) population. Gene sequence analysis identified no known resistant mutations in the ALS gene of the R population. Furthermore, real-time quantitative reverse transcriptase PCR experiments indicated that the expression level of the ALS gene in the R population was not different from that of the S population. However, the cytochrome P450 inhibitor malathion reversed the R population's resistance to mesosulfuron-methyl. The result of ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS-MS) spectral analysis indicated that the metabolic rates of mesosulfuron-methyl in the R population were significantly faster than in the S population. Therefore, non-target resistance to mesosulfuron-methyl has been demonstrated in the R population. The resistance was very likely caused by enhanced herbicide metabolism.


Corresponding author

Author for correspondence: Lingxu Li, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Qingdao 266109, People’s Republic of China. Email:


Hide All
Bai, S, Liu, W, Wang, H, Zhao, N, Jia, S, Zou, N, Guo, W, Wang, J (2018) Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L. J Agric Food Chem 66:98509857
Beckie, H, Tardif, F (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528
Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248254
Chatham, L, Wu, C, Riggins, C, Hager, A, Young, B, Roskamp, G, Tranel, P (2015) EPSPS gene amplification is present in the majority of glyphosate-resistant Illinois waterhemp (Amaranthus tuberculatus) populations. Weed Technol 29:4855
Chen, J, Huang, H, Zhang, C, Wei, S, Huang, Z, Chen, J, Wang, X (2015) Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 242:859868
Christopher, J, Preston, C, Powles, S (1994) Malathion antagonizes metabolism-based chlorsulfuron resistance. Pestic Biochem Physiol 49:172182
Délye, C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176187
Didierjean, L, Gondet, L, Perkins, R, Lau, SM, Schaller, H, O’Keefe, DP, Werck-Reichhart, D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179189
Doyle, J, Doyle, J (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:1315
Durner, J, Gailus, V, Boger, P (1991) New aspects on inhibition of plant acetolactate synthase by chlosulfuron and imaaquin. Plant Physiol 95:11441149
Feng, Y, Gao, Y, Zhang, Y, Dong, L (2016) Mechanisms of resistance to pyroxsulam and ACCase inhibitors in Japanese foxtail (Alopecurus japonicus). Weed Sci 64:695704
Gaines, T, Shaner, D, Ward, S, Leach, J, Preston, C, Westra, P (2011) Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J Agric Food Chem 59:58865889
Guo, J, Riggins, C, Hausman, N, Hager, A, Riechers, D, Davis, A, Tranel, P (2017) Nontarget-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus). Weed Sci 63:399407
Iwakami, S, Shimono, Y, Manabe, Y, Endo, M, Shibaike, H, Uchino, A, Tominaga, T (2017) Copy number variation in acetolactate synthase genes of thifensulfuron-methyl resistant Alopecurus aequalis (shortawn foxtail) accessions in Japan. Front Plant Sci 8:254
Kaiser, Y, Gerhards, R (2015) Degradation and metabolism of fenoxaprop and mesosulfuron + iodosulfuron in multiple resistant blackgrass (Alopecurus myosuroides). Gesunde Pflanzen 67:109117
Koo, D, Jugulam, M, Putta, K, Cuvaca, I, Peterson, D, Currie, R, Friebe, B, Gill, B (2018) Gene duplication and aneuploidy trigger rapid evolution of herbicide resistance in common waterhemp. Plant Physiol 176:19321938
Kwon, C, Pennner, D (1995) Response of a chlorsulfuron-resistant biotype of Kochia scoparia to ALS inhibiting herbicides and piperonyl butoxide. Weed Sci 43:561565
Laforest, M, Soufiane, B, Simard, MJ, Obeid, K, Page, E, Nurse, RE (2017) Acetyl-CoA carboxylase overexpression in herbicide-resistant large crabgrass (Digitaria sanguinalis). Pest Manag Sci 73:22272235
Li, L, Bi, Y, Liu, W, Yuan, G, Wang, J (2013) Molecular basis for resistance to fenoxaprop-p-ethyl in American sloughgrass (Beckmannia syzigachne Steud.). Pestic Biochem Physiol 105:118121
Li, L, Liu, W, Chi, Y, Guo, W, Luo, X, Wang, J (2015) Molecular mechanism of mesosulfuron-methyl resistance in multiply-resistant american sloughgrass (Beckmannia syzigachne). Weed Sci 63:781787
Li, W, Zhang, L, Zhao, N, Guo, W, Liu, W, Li, L, Wang, J (2017) Multiple resistance to ACCase and ALS-inhibiting herbicides in Beckmannia syzigachne (Steud.) Fernald without mutations in the target enzymes. Chil J Agric Res 77:257265
Liu, W, Bai, S, Zhao, N, Jia, S, Li, W, Zhang, L, Wang, J (2018) Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aauaticum (L.). Plant Biol 18:225238
Mei, Y, Si, C, Liu, M, Qiu, L, Zheng, M (2017) Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pestic Biochem Physiol 141:8489
Owen, M, Goggin, D, Powles, S (2011) Non-traget-site-based resistance to ALS-inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Manag Sci 68:10771082
Powles, S, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347
Preston, C, Tardif, F, Christopher, J, Powles, S (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic Biochem Physiol 54:123134
Ray, T (1986) Sulfonylurea herbicides as inhibitors of amino acid biosynthesis in plants. Trends Biochem Sci 11:180183
Sammons, R, Gaines, T (2014) Glyphosate resistance: state of knowledge. Pest Manage Sci 70:13671377
Schmittgen, T, Livak, K (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:11011108
Seefeldt, S, Jensen, J, Fuerst, E (1995) Log-logistic analysis of herbicide dose response relationship. Weed Technol 9:218227
Wang, J, Li, X, Li, D, Han, Y, Li, Z, Yu, H, Cui, H (2018) Non-target-site and target-site resistance to AHAS inhibitors in american sloughgrass (Beckmannia syzigachne). J Integr Agric 17:3034530347
Wrzesińska, B, Kierzek, R, Obrępalska-Stęplowska, A (2016) Evaluation of six commonly used reference genes for gene expression studies in herbicide-resistant Avena fatua biotypes. Weed Res 56:284292
Xu, J, Wang, X-Y, Guo, W-Z (2015) The cytochrome P450 superfamily: key players in plant development and defense. J Integr Agric 14:16731686
Yang, Q, Li, J, Shen, J, Xu, Y, Liu, H, Deng, W, Li, X, Zheng, M (2018) Metabolic resistance to acetolactate synthase inhibiting herbicide tribenuron-methyl in Descurainia sophia L. mediated by cytochrome P450 enzymes. J Agric Food Chem 66:43194327
Yu, Q, Abdallah, I, Han, H, Owen, M, Powles, S (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiing herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230:713723
Yu, Q, Friesen, L, Zhang, X, Powles, S (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic Biochem Physiol 78:2130
Yu, Q, Powles, S (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci 70:13401350
Yuan, J, Tranel, P, Stewart, C J r (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:613
Zhao, B, Fu, D, Yu, Y, Huang, C, Yan, K, Li, P, Shafi, J, Zhu, H, Wei, S, Ji, M (2017) Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pestic Biochem Physiol 140:7984
Zhao, N, Yan, Y, Wang, H, Bai, S, Wang, Q, Liu, W, Wang, J (2018) Acetolactate synthase overexpression in mesosulfuron-methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.): reference gene selection and herbicide target gene expression analysis. J Agric Food Chem 66:96249634


Related content

Powered by UNSILO

Non–target site based resistance to the ALS-inhibiting herbicide mesosulfuron-methyl in American sloughgrass (Beckmannia syzigachne)

  • Mingliang Wang (a1), Bingqi Liu (a1), Yihui Li (a1), Xiaoyong Luo (a2) and Lingxu Li (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.