Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T16:27:54.988Z Has data issue: false hasContentIssue false

Multiple Pro197 ALS Substitutions Endow Resistance to ALS Inhibitors within and among Mayweed Chamomile Populations

Published online by Cambridge University Press:  20 January 2017

Suphannika Intanon*
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Alejandro Perez-Jones
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Andrew G. Hulting
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Carol A. Mallory-Smith
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
*
Corresponding author's E-mail: suphannika.intanon@oregonstate.edu

Abstract

Mayweed chamomile seeds were collected from six different fields across the Pacific Northwest. All populations (each collection site was considered a population) were suspected to have some level of acetolactate synthase (ALS) resistance. Greenhouse and laboratory studies were conducted to determine if these populations were resistant to three different classes of ALS inhibitors: sulfonylureas (SU), imidazolinones (IMI), and triazolopyrimidines (TP). A whole-plant dose–response and in vitro ALS activity studies confirmed cross-resistance to thifensulfuron + tribenuron/chlorsulfuron (SU), imazethapyr (IMI), and cloransulam (TP); however, resistance varied by herbicide class and population. Two ALS isoforms of the ALS gene (ALS1 and ALS2) were identified in mayweed chamomile; however, only mutations in ALS1 were responsible for resistance. No mutations were found in ALS2. Sequence analysis of the partial ALS gene identified four point mutations at position 197 (Pro197 to Leu, Gln, Thr, or Ser) in the resistant populations. This study demonstrates genotypic variation associated with cross-resistance to ALS inhibitors within and between populations.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ashigh, J., Corbett, C. L., Smith, P. J., Laplante, J., and Tardif, F. J. 2009. Characterization and diagnostic tests of resistance to acetohydroxyacid synthase inhibitors due to an Asp376Glu substitution in Amaranthus powellii . Pestic. Biochem. Physio. 95:3846.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.Google Scholar
Heap, I. M. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: March 14, 2011.Google Scholar
Kaloumenos, N. S., Dordas, C. A., Diamantidis, G. C., and Eleftherohorinos, I. G. 2009. Multiple Pro197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) confer resistance to tribenuron. Weed Sci. 57:362368.Google Scholar
Kleier, D. A. and Gardner, G. 1993. Quantitative structure activity relationships: adding value to herbicide bioassays. Pages 7598 in Streibig, J. C., and Kudsk, P., eds. Herbicide Bioassay. Boca Raton, FL CRC.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
Kolkman, J. M., Slabaugh, M. B., and Bruniard, J. M., et al. 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor. Appl. Genet. 109:11471159.Google Scholar
Lamego, F. P., Charlson, D., Delatorre, C. A., Burgos, N. R., and Vidal, R. A. 2009. Molecular basis of resistance to ALS-inhibitor herbicides in greater beggarticks. Weed Sci. 57:474481.Google Scholar
Laplante, J., Rajcan, I., and Tardif, F. J. 2009. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis . Theor. Appl. Genet. 119:577585.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17:605619.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Massa, D., Krenz, B., and Gerhards, R. 2011. Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations. Weed Res. DOI: 10.1111/j.1365-3180.2011.00843.x.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Dubbleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA. 103:569573.Google Scholar
Mitsuoka, S. and Ehrendorfer, F. 1972. Cytogenetics and evolution of Matricaria and related genera (Asteraceae-Anthemideae). Plant Syst. Evol. 120:155200.Google Scholar
Park, K. W. and Mallory-Smith, C. A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44:7177.Google Scholar
Perez-Jones, A., Mallory-Smith, C. A., Hansen, J. L., and Zemetra, R. S. 2006. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host). Theor. Appl. Genet. 114:177186.Google Scholar
Perez-Jones, A., Park, K. W., and Mallory-Smith, C. A. 2004. Anthemis cotula resistance to ALS inhibitors. Pages 4445 in Proceedings of Western Society of Weed Science, 57th annual meeting, Colorado Springs, Colorado, March 9–11, 2004.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicides resistance in weeds. Pages 2360 in Powles, S. B., and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139 in Powles, S. B., and Holtum, J. A. M., eds. Herbicide Resistance in Plants, Biology, and Biochemistry. Boca Raton, FL Lewis Publishers.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Sibony, M. and Rubin, B. 2003. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta. 216:10221027.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. Pages 2953 in Streibig, J. C., and Kudsk, P., eds. Herbicide Bioassay. Boca Raton, FL CRC.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS inhibitors: what have we learned? Weed Sci. 50:700712.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2011. ALS Mutations from Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed: March 14, 2011.Google Scholar
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56:797806.Google Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS inhibitors. Weed Sci. 55:8390.Google Scholar
Yu, Q., Han, H., and Powles, S. B. 2008. Mutations of the ALS gene endowing resistance to ALS inhibitors in Lolium rigidum populations. Pest Manag. Sci. 64:12291236.Google Scholar