Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:59:51.773Z Has data issue: false hasContentIssue false

Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes

Published online by Cambridge University Press:  20 January 2017

Fabián D. Menalled
Affiliation:
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717-3120
Alejandro C. Costamagna
Affiliation:
Department of Entomology, 204 CIPS, Michigan State University, East Lansing, MI 48824
Tammy K. Wilkinson
Affiliation:
Department of Entomology, 204 CIPS, Michigan State University, East Lansing, MI 48824

Abstract

Annual crop fields typically are simple habitats dominated by a few plant species where pesticides play a major role in managing weed and insect infestations. Recently, there has been significant interest in the potential to reduce reliance on pesticides by manipulating plant species and communities to benefit natural enemies of insects and weeds. Such efforts aim to enhance natural enemy impact by providing appropriate food, shelter, and hosts, and efforts typically are accomplished by manipulation of plant species, populations, or communities. Habitat management is generally viewed as an important factor in maintaining stable insect and natural enemy populations in agricultural systems and may have a similar function in increasing weed seed predation. Crop and noncrop habitats provide resources to natural enemies either directly through floral nectar and pollen, indirectly by increased host or prey availability, or through emergent properties of the habitat such as by moderating the microclimate. These critical resources for natural enemies can be provided in agricultural ecosystems at several scales: within fields, at field margins, or as a component of the larger landscape. Because individual natural enemy species may require quite specific resources at different times and spatial scales, not all attempts to manipulate habitat diversity are equally effective. We review the role of plant resources, including weeds, in supporting natural enemy communities and provide case studies of how varying plant diversity at different spatial scales can influence the effectiveness of biological control in agricultural landscapes.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altieri, M. A. and Letourneau, D. K. 1982. Vegetation management and biological control in agroecosystems. Crop Prot 1:405430.Google Scholar
Altieri, M. A., van Schoonhoven, A., and Doll, J. 1977. The ecological role of weeds in insect pest management systems: a review illustrated by bean (Phaseolus vulgaris) cropping systems. Pest Articles and News Summaries 23:195205.Google Scholar
Altieri, M. A. and Whitcomb, W. H. 1979. The potential use of weeds in manipulation of beneficial insects. Hort. Sci 14:1218.Google Scholar
Andow, D. A. 1991. Vegetational diversity and arthropod population response. Annu. Rev. Entomol 36:561586.Google Scholar
Barbosa, P. 1998. Conservation Biological Control. San Diego, CA: Academic. 396 p.Google Scholar
Bugg, R. L. and Waddington, C. 1994. Using cover crops to manage arthropod pests of orchards: a review. Agric. Ecosyst. Environ 50:1128.Google Scholar
Carmona, D. M. and Landis, D. A. 1999. Influence of refuge habitats and cover crops on seasonal activity-density of ground beetles (Coleoptera: Carabidae) in field crops. Environ. Entomol 28:11451153.Google Scholar
Carmona, D. M., Menalled, F. D., and Landis, D. A. 1999. Northern field cricket, Gryllus pennsylvanicus Burmeister (Orthoptera: Gryllidae): laboratory weed seed predation and within field activity-density. J. Econ. Entomol 92:825829.Google Scholar
Carroll, C. R. and Risch, S. J. 1984. The dynamics of seed harvesting in early successional communities by a tropical ant, Solenopsis geminata . Oecologia 61:388392.CrossRefGoogle ScholarPubMed
Coli, W. M., Ciurlino, R. A., and Hosmer, T. 1994. Effect of understory and border vegetation composition on phytophagous and predatory mites in Massachusetts commercial apple orchards. Agric. Ecosyt. Eviron 50:4960.Google Scholar
Davis, A. S., Dixon, P. M., and Liebman, M. 2003. Cropping system effects on giant foxtail demography: II. Retrospective perturbation analysis. Weed Sci 51:930939.Google Scholar
Davis, A. S. and Liebman, M. 2003. Cropping system effects on giant foxtail (Setaria faberi) demography: I. Green manure and tillage timing. Weed Sci 51:921929.Google Scholar
Delaplane, K. S. and Mayer, D. F. 2000. Crop Pollination by Bees. New York: CABI. 344 p.Google Scholar
Díaz, M. 1992a. Spatial and temporal patterns of granivorous ant seed predation in patchy cereal crop areas of central Spain. Oecologia 91:561568.Google Scholar
Díaz, M. 1992b. Rodent seed predation in cereal crop areas of central Spain: effects of physiognomy, food availability, and predation risk. Ecography 15:7785.Google Scholar
Díaz, M. 1994. Granivory in cereal crop landscapes of central Spain: environmental correlates of rodents, birds, and ants. Acta Oecologica 15:739752.Google Scholar
Díaz, M. and Tellería, J. L. 1994. Predicting the effects of agricultural changes in central Spain croplands on seed-eating overwintering birds. Agric. Ecosyt. Environ 49:289298.CrossRefGoogle Scholar
Dyer, L. E. and Landis, D. A. 1996. Effects of habitat, temperature, and sugar availability on longevity of Eriboris terebrans (Hymenoptera: Ichneumonidae). Environ. Entomol 25:11921201.Google Scholar
Dyer, L. E. and Landis, D. A. 1997. Influence of noncrop habitats on the distribution of Eriborus terebrans (Hymenoptera: Ichneumonidae) in cornfields. Environ. Entomol 26:924932.Google Scholar
Elliott, N. C., Kieckhefer, R. W., Michels, G. J., and Giles, K. L. 2002. Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environ. Entomol 31:253260.Google Scholar
Forsyth, S. F. and Watson, A. K. 1985. Predispersal seed predation of Canada thistle. Can. Entomol 117:1075–1071.CrossRefGoogle Scholar
Gonzales-Andujar, J. L. and Fernandez-Quintanilla, C. 1991. Modeling the population dynamics of Avena sterilis under dry-land cereal cropping systems. J. Appl. Ecol 28:1627.CrossRefGoogle Scholar
Griffiths, J. T. and Swanton, C. J. 1999. Predispersal seed predation in corn. Proc. Weed Sci. Soc. Am 39:76.Google Scholar
Gurr, G. M., Wratten, S. D., and Barbosa, P. 2000. Success in conservation biological control of arthropods. Pages 105132 in Gurr, G. and Wratten, S. eds. Biological control: Measures of success. Dordrecht: Kluwer Academic.Google Scholar
Halaj, J., Cady, A. B., and Uetz, G. W. 2000. Modular habitat refugia enhance generalist predators and lower plant damage in soybeans. Environ. Entomol 29:383393.Google Scholar
Hassall, M., Hawthorne, A., Maudsley, M., White, P., and Cardwell, C. 1992. Effects of headland management on invertebrate communities in cereal fields. Agric. Ecosyt. Eviron 40:155178.Google Scholar
Hooks, C. R R., Valenzuela, H. R., and Defrank, J. 1998. Incidence of pests and arthropod natural enemies in zucchini grown with living mulches. Agric. Ecosyt. Eviron 69:217231.CrossRefGoogle Scholar
Jordan, N., Mortensen, D. A., Prenzlow, D. M., and Cox, K. C. 1995. Simulation analysis of crop rotation effects on weed seedbank. Am. J. Bot 82:390398.Google Scholar
Kremer, R. J. and Spencer, N. R. 1989a. Impact of a seed-feeding insect and microorganisms on velvetleaf (Abutilon theophrasti) seed viability. Weed Sci 37:211216.CrossRefGoogle Scholar
Kremer, R. J. and Spencer, N. R. 1989b. Interactions of insects, fungi, and burial on velvetleaf (Abutilon theophrasti) seed viability. Weed Technol 3:322328.Google Scholar
Landis, D. A. and Menalled, F. D. 1998. Ecological considerations in the conservation of effective parasitoid communities in agriculture systems. Pages 101121 in Barbosa, P. ed. Conservation Biological Control. San Diego: Academic.Google Scholar
Landis, D. A., Wratten, S. D., and Gurr, G. M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol 45:175201.Google Scholar
Lee, J. C., Menalled, F. D., and Landis, D. A. 2001. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J. Appl. Ecol 38:472483.Google Scholar
Legaspi, J. C. and O'Neil, R. J. 1993. Life history of Podisus maculiventris given low numbers of Epilachna varivestis as prey. Environ. Entomol 22:11921200.CrossRefGoogle Scholar
Legaspi, J. C. and O'Neil, R. J. 1994. Developmental response of nymphs of Podisus maculiventris (Heteroptera: Pentatomidae) reared with low numbers of prey. Environ. Entomol 23:374380.CrossRefGoogle Scholar
Liebman, M., Westerman, P., Menalled, F., and Heggenstaller, A. 2003. Weed responses to diversified cropping systems. Proceedings of the Symposium on Beyond Thresholds: Applying Multiple Control Tactics in Integrated Weed Management. North-Central Weed Science Society meeting, Louisville, KY.Google Scholar
Long, R. F., Corbett, A., Lamb, C., Reberg-Horton, C., Chandler, J., and Stimmann, M. 1998. Beneficial insects move from flowering plants to nearby crops. Calif. Agr 52:2326.Google Scholar
Lys, J. A. and Nentwig, W. 1992. Augmentation of beneficial arthropods by strip-management. 4. Surface activity, movements and activity density of abundant carabid beetles in cereal fields. Oecologia 92:373382.Google ScholarPubMed
Marino, P. C., Gross, K. L., and Landis, D. A. 1997. Post-dispersal weed seed loss in Michigan maize fields. Agric. Ecosyst. Environ 66:189196.Google Scholar
Marino, P. C. and Landis, D. A. 1996. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl 6:276284.Google Scholar
Marshall, E. J. P., Brown, V. K., Boatman, N. D., Lutman, P. J. W., Squire, G. R., and Ward, L. K. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res 43:7789.Google Scholar
Menalled, F. D., Costamagna, A. C., Marino, P. C., and Landis, D. A. 2003. Temporal variation in the response of parasitoids to agricultural landscape structure. Agric. Ecosyst. Environ 96:2935.Google Scholar
Menalled, F. D., Landis, D. A., and Dyer, L. 2004. Research and extension supporting ecologically based IPM systems. Journal of Crop Improvement 11:153174.Google Scholar
Menalled, F., Lee, J., and Landis, D. A. 1999a. Manipulating carabid beetle abundance alters prey removal rates in corn fields. Biocontrol 43:441456.Google Scholar
Menalled, F. D., Lee, J., and Landis, D. A. 2001. Herbaceous filter strips in agroecosystems: implications for ground beetle (Coleoptera: Carabidae) conservation and invertebrate weed seed predation. Great Lakes Entomol 34:7791.Google Scholar
Menalled, F. D., Liebman, M., and Renner, K. 2005. The ecology of weed seed predation in herbaceous cropping systems. in Singh, H., Batish, D., and Kohli, R., eds. Handbook of Sustainable Weed Management. Binghamton, NY: Haworth.Google Scholar
Menalled, F. D., Marino, P. C., Gage, S. H., and Landis, D. A. 1999b. Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol. Appl 9:634641.CrossRefGoogle Scholar
Menalled, F. D., Marino, P. C., Renner, K., and Landis, D. A. 2000. Post-dispersal weed seed predation in Michigan crop fields as a function of agricultural landscape structure. Agric. Ecosyt. Environ 77:193202.Google Scholar
Merriam, G. 1988. Landscape dynamics in farmland. Trends Ecol. Evol 3:1620.Google Scholar
Mohler, C. L. 2001. Weed life history: identifying vulnerabilities. Pages 4098 in Liebman, M., Mohler, C. L., and Staver, C. P. eds. Ecological Management of Agricultural Weeds. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Nault, B. A. and Kennedy, G. G. 2000. Seasonal changes in habitat preference by Coleomegilla maculata: implications for Colorado potato beetle management in potato. Biol. Control 17:164173.CrossRefGoogle Scholar
Nicholls, C. I., Parrella, M., and Altieri, M. A. 2001. The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landscape Ecol 16:133146.Google Scholar
Norris, R. F. 1999. Ecological implications of using thresholds for weed management. J. Crop Prod 2:3158.Google Scholar
Nurse, R. E., Booth, B. D., and Swanton, C. J. 2003. Predispersal seed predation of Amaranthus retroflexus and Chenopodium album growing in soyabean fields. Weed Res 43:260268.CrossRefGoogle Scholar
Östman, O., Ekbom, B., and Bengtsson, J. 2001. Landscape heterogeneity and farming practice influence biological control. Basic Appl. Ecol 2:365371.Google Scholar
Pemberton, R. W. and Vandenberg, N. J. 1993. Extrafloral nectar feeding by ladybird beetles (Coleoptera: Coccinellidae). Proc. Entomol. Soc. Wash 95:139151.Google Scholar
Pfannenstiel, R. S., Unruh, T. R., and Brunner, J. F. 2000. Biological control of leafrollers: prospects using habitat manipulation. Washington Hort. Assoc 95:144149.Google Scholar
Pfiffner, L. and Luka, H. 2000. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ 78:215222.Google Scholar
Pickett, C. H. and Bugg, R. L. 1998. Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Agriculture Pests. Los Angeles: University of California Press. 422 p.Google Scholar
Pogue, D. W. and Schnell, G. D. 2001. Effects of agriculture on habitat complexity in a prairie-forest ecotone in the southern great plains of North America. Agric. Ecosyst. Environ 87:287298.Google Scholar
Roberts, H. A., Chancellor, R. J., and Hill, T. A. 1982. The biology of weeds. Pages 136 in Roberts, H. A. ed. Weed Control Handbook: Principles. Oxford, Great Britain: Blackwell Scientific.Google Scholar
Russell, E. P. 1989. Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol 18:590599.Google Scholar
Seaman, R. E. and Marino, P. C. 2003. Influence of mound building and selective seed predation by the red imported fire ant (Solenopsis invicta) on an old-field plant assemblage. J. Torrey Bot. Soc 130:193201.Google Scholar
Siekmann, G., Tenhumberg, B., and Keller, M. A. 2001. Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos 95:425430.Google Scholar
Steffan-Dewenter, I., Münzenberg, U., and Tscharntke, T. 2001. Pollination, seed set and seed predation on a landscape scale. Proc. Royal Soc. Lond. Series B 268:16851690.Google Scholar
Swanton, C. J., Griffiths, J. T., Cromar, H. E., and Booth, B. D. 1999a. Pre- and post-dispersal weed seed predation and its implications to agriculture. Pages 829834 in The 1999 Brighton Conference— Weeds: Proceedings of an International Conference Held at the Brighton Metropole Hotel, Brighton, U.K., 15–18 November 1999. Vol. 3. British Crop Protection Council.Google Scholar
Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R. R., Deen, W., and Shreshta, A. 1999b. Weed thresholds: theory and applicability. J. Crop Prod 2:929.Google Scholar
Tedders, W. L. 1983. Insect management in deciduous orchard ecosystems: habitat manipulation. Environ. Manage 7:2934.Google Scholar
Thies, C., Steffan-Dewenter, I., and Tscharntke, T. 2003. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:1825.Google Scholar
Thies, C. and Tscharntke, T. 1999. Landscape structure and biological control in agroecosystems. Science 285:893895.CrossRefGoogle ScholarPubMed
Tooley, J. and Brust, G. 2002. Weed seed predation by carabid beetles. Pages 215229 in Holland, J. M. ed. The Agroecology of Carabid Beetles. Andover, U.K.: Intercept Ltd.Google Scholar
Tscharntke, T. 2000. Parasitoid populations in the agricultural landscape. Pages 235253 in Hochberg, M. E. and Ives, A. R. eds. Parasitoid Population Biology. Princeton, NJ: Princeton University Press.Google Scholar
Wäckers, F. L., van Rijn, P. C. J., and Bruin, J. 2005. Plant Provided Food and Plant-Carnivore Mutualism. Cambridge, U.K.: Cambridge University Press.Google Scholar
Wilkinson, T. K. and Landis, D. A. 2005. Habitat diversification in biological control: The role of plant resources. in Wäckers, F. L., van Rijn, P.C.J., and Bruin, J., eds. Plant Provided Food and Plant-Carnivore Mutualism. Cambridge, U.K.: Cambridge University Press.Google Scholar
van Emden, H. F. 1963. Observations of the effects of flowers on the activity of parasitic Hymenoptera. Entomol. Mon. Mag. (1962) 265270.Google Scholar
van Emden, H. F. 1965. The role of uncultivated land in the biology of crop pests and beneficial insects. Sci. Hort 17:121136.Google Scholar
White, A. J., Wratten, S. D., Berry, N. A., and Weigmann, U. 1995. Habitat management to enhance biological control of Brassica pests by hover flies (Diptera: Syrphidae). J. Econ. Entomol 88:11711176.Google Scholar
With, K. A., Pavuk, D. M., Worchuck, J. L., Oates, R. K., and Fisher, J. L. 2002. Threshold effects of landscape structure on biological control in agroecosystems. Ecol. Applic 12:5265.Google Scholar
Zangger, A., Lys, J. A., and Nentwig, W. 1994. Increasing the availability of food and the reproduction of Poecilus cupreus in a cereal field by strip-management. Entomol. Exp. Appl 71:11120.Google Scholar