Skip to main content Accessibility help
×
Home

Japanese Foxtail (Alopecurus japonicus) Resistance to Fenoxaprop and Pinoxaden in China

  • Ibrahim A. Mohamed (a1), Runzhi Li (a1), Zhenguo You (a2) and Zhaohu Li (a1)

Abstract

Japanese foxtail is one of the most common and competitive annual grass weeds of wheat in China. Whole-plant dose-response experiments were conducted with fenoxaprop and pinoxaden to confirm and characterize resistant and susceptible Japanese foxtail populations and to elucidate the basis of resistance to these herbicides. The resistant Japanese foxtail population was 49-fold resistant to fenoxaprop and 16-fold (cross) resistant to pinoxaden relative to the susceptible population, which was susceptible to both fenoxaprop and pinoxaden herbicides. Molecular analysis of resistance confirmed that the Ile1781 to Leu mutation in the resistant population conferred resistance to both fenoxaprop and pinoxaden. This is the first report of cross resistance of Japanese foxtail to pinoxaden in the world and of a target site mutation that corresponded to resistance to both fenoxaprop and pinoxaden in Japanese foxtail. Prior selection pressure from fenoxaprop could result in evolution of resistance to fenoxaprop and cross resistance to pinoxaden in Japanese foxtail population.

Copyright

Corresponding author

Corresponding author's E-mail: lizhaohu@cau.edu.cn

Footnotes

Hide All
Current address: Department of Agronomy, Tianjin Agricultural University, Tianjin, 30384, China.

Footnotes

References

Hide All
Balgheim, N. 2009. Investigations on herbicide resistant grass weeds. . Stuttgart, Germany University of Hohenheim. 80 p.
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.
Burke, I. C., Thomas, W. E., Burton, J. D., and Wilcut, J. W. 2006. A seedling assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in johnsongrass (Sorghum halepense). Weed Technol. 20:950955.
Christoffers, M., Berg, M. L., and Messersmith, C. G. 2002. An isoleucine to Leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome. 45:10491056.
Cocker, K. M., Coleman, J. O. D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res. 40:323334.
Collavo, A., Panozzo, S., Lucchesi, G., Scarabel, L., and Sattin, M. 2011. Characterisation and management of Phalaris paradoxa resistant to ACCase-inhibitors. Crop Prot. 30:293299.
Cummins, I., Moss, S., Cole, D. J., and Edwards, R. 1997. Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pestic. Sci. 51:244250.
Délye, C. 2005. Weed resistance to acetyl-coenzyme A carboxylase-inhibitors: an update. Weed Sci. 53:728746.
Délye, C., Calmés, É., and Matéjicek, A. 2002a. SNP markers for blackgrass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoAcarboxylase inhibiting herbicides. Theor. Appl. Genet. 104:11141120.
Délye, C., Matéjicek, A., and Gasquez, J. 2002b. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in blackgrass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58:474478.
Délye, C., Matéjicek, A., and Michel, S. 2008. Cross-resistance pattern to ACCase-inhibiting herbicide conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass) re-examined at the recommended herbicide field rate. Pest Manag. Sci. 64:11791186.
Délye, C., Pernin, F., and Michel, S. 2011. ‘Universal’ PCR assays detecting mutations in acetyl-coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds. Weed Res. 51:353362.
Délye, C., Wang, T., and Darmency, H. 2002c. An isoleucine–leucine substitution in chloroplastic acetyl-Co A carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta. 214:421427.
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.
Ellis, A. T., Steckel, L. E., Main, C. L., de Melo, M. S. C., West, D. R., and Mueller, T. C. 2010. A survey for diclofop-methyl resistance in Italian ryegrass from Tennessee and how to manage resistance in wheat. Weed Technol. 24:303309.
Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. 39:101138.
Heap, I. M. 2011. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed: April 2011.
Hidayat, I. and Preston, C. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-p-butyl. Pestic. Biochem. Physiol. 57:137146.
Huang, S. X. 2004. Studies on biology and resistance of Alopecurus aequalis Sobol. to acetyl-coenzyme A carboxylase inhibitors. . Nanjing, China Nanjing Agric. Univ. 74 p. [In Chinese].
Incledon, B. J. and Hall, J. C. 1997. Acetyl-coenzyme A carboxylase: quaternary structure and inhibition by graminicidal herbicides. Pestic. Biochem. Physiol. 57:255271.
Kaundun, S. S. 2010. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manag. Sci. 66:12491256.
Kuk, Y., Burgos, N. R., and Scott, R. C. 2008. Resistance profile of diclofop-resistant Italian ryegrass (Lolium multiflorum) to ACCase- and ALS-inhibiting herbicides in Arkansas, USA. Weed Sci. 56:614623.
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosurides Hud.). Agronomie. 23:601608.
Li, R. 2007. Studies on herbicide-resistance and genetic diversity of wild oat Avena fatua L. populations in China. Ph.D. dissertation. Beijing Beijing Agricultural University. 53 p. [In Chinese].
Li, R., Wang, S., Duan, L., Li, Z., Christoffers, M. J., and Mengistu, L. 2007. Genetic diversity of wild oat (Avena fatua) populations from China and the United States. Weed Sci. 55:95101.
Liu, W., Harrison, D. K., Chalupska, D., Gornicki, P., O'Donnell, C. C., Adkins, S. W., Haselkorn, R., and Williams, R. R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. USA. 104:36273632.
Maneechote, C., Samanwong, S., Zhang, X., and Powles, S. B. 2005. Resistance to ACCase-inhibiting herbicides in sprangletop (Leptochloa chinensis). Weed Sci. 53:290295.
Nikolau, B. J., Ohlrogge, J. B., and Wurtele, E. S. 2003. Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 414:211222.
Petit, C., Bay, G., Pernin, F., and Délye, C. 2010b. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag. Sci. 66:168177.
Petit, C., Duhieu, B., Boucansaud, K., and Délye, C. 2010a. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci. 178:501509.
Porter, D. J., Kopec, M., and Hofer, U. 2005. Pinoxaden: a new selective postemergence graminicide for wheat and barley. Proc. Weed Sci. Soc. Am. 45:95.
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Ann. Rev. Plant Biol. 61:317347.
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanism, inheritance, and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC.
Qiang, S. 2001. Weed Science. Beijing Chinese Agricultural Publishing House. 2471 p.
Scarabel, L., Panozzo, S., Varotto, S., and Sattin, M. 2011. Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Pest Manag. Sci. 67:932941.
Uludag, A., Park, K. W., Cannon, J., and Mallory-Smith, C. A. 2008. Cross resistance of acetyl-CoA carboxylase (ACCase) inhibitor resistant wild oat (Avena fatua) biotypes in the Pacific Northwest. Weed Technol. 22:142145.
White, G. M., Moss, S. R., and Karp, A. 2005. Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum . Weed Res. 45:440448.
Weed Science Society of America. 1998. “Herbicide resistance” and “herbicide tolerance” defined. Weed Technol. 12:789.
Yang, C. 2007. Study on resistance of Japanese foxtail (Alopecurus japonicus) to haloxyfop-R-methyl in oilseed rape field. . Nanjing Nanjing Agric. Univ. 77 p. [In Chinese].
Yu, L. P. C., Kim, Y. S., and Tong, L. 2010. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc. Natl. Acad. Sci. USA. 107:2207222077.
Yu, Q., Collavo, A., Zheng, M-Q., Owen, M., Sattin, M., and Powles, S. B. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol. 145:547558.
Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., and Gornicki, P. 2001. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci. USA. 98:66176622.
Zhang, X. Q. and Powles, S. B. 2006. Six amino acid substitutions in the carboxyl- transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytologist. 172:636645.

Keywords

Related content

Powered by UNSILO

Japanese Foxtail (Alopecurus japonicus) Resistance to Fenoxaprop and Pinoxaden in China

  • Ibrahim A. Mohamed (a1), Runzhi Li (a1), Zhenguo You (a2) and Zhaohu Li (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.