Skip to main content Accessibility help
×
Home

Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds

  • Jianmei Li (a1), Reid J. Smeda, Brent A. Sellers (a1) and William G. Johnson (a2)

Abstract

Absorption and translocation of three commercial formulations of glyphosate, the isopropylamine salt formulated as Roundup Ultra™ (IPA1) and Roundup UltraMax™ (IPA2) and the diammonium salt formulated as Touchdown™ IQ (DA), were compared in three- to five-leaf velvetleaf, common waterhemp, and pitted morningglory. Absorption of 14C-glyphosate in velvetleaf was not significantly different among the three formulations up to 50 h after treatment (HAT). More absorption of 14C-glyphosate occurred in the IPA1 (26.0%) vs. the IPA2 (17.7%) formulation over 74 h. Of the total 14C-glyphosate absorbed, 20 to 35% was translocated from the treated leaf to the rest of the plant. Initial absorption of 14C-glyphosate was rapid in common waterhemp with the IPA1 (42.7%) and IPA2 (30.7%) formulations; both were higher compared with absorption of the DA formulation (11.5%) by 2 HAT. These differences continued up to 26 HAT, but no differences were evident by 74 HAT. Up to 65% of the 14C-glyphosate absorbed was translocated out of the treated leaf by 74 HAT, with roots the primary sink. Initial absorption of 14C-glyphosate was slow in pitted morningglory compared with the other species. More foliar absorption occurred in plants treated with the DA (13.6%) vs. the IPA2 formulation (4.9%) by 6 HAT. Absorption beyond 26 HAT was not different among the three glyphosate formulations. Translocation of 14C-glyphosate to roots was 27% greater as the DA salt than IPA1 and IPA2 by 74 HAT. The distribution pattern of glyphosate was similar in all species; phosphorimages demonstrated movement both acropetal and basipetal, with accumulation in roots greater than in any other plant parts. An efficacy study parallel to the 14C study showed no difference among the three glyphosate formulations on the species investigated at both 74 HAT and 2 wk after treatment.

Copyright

Corresponding author

Corresponding author. Department of Agronomy, University of Missouri, Columbia, MO 65211; smedar@missouri.edu

References

Hide All
Ahmadi, M. S., Haderlie, L. C., and Wicks, G. A. 1980. Effect of growth stage and water stress on barnyardgrass (Echinochloa crus-galli) control and on glyphosate absorption and translocation. Weed Sci 28:277282.
Atkinson, D. 1985. Efficacy of glyphosate in fruit plantations. Pages 301322 in Grossbard, E. and Atkinson, D. eds. The Herbicide Glyphosate. London: Butterworths.
Baird, D. D., Upchurch, R. P., Homesley, W. B., and Franz, J. E. 1971. Introduction of a new broad spectrum postemergence herbicide class with utility for herbaceous perennial weed control. Proc. N. Cent. Weed Contr. Conf 26:6468.
Bariuan, J. V., Reddy, K. N., and Wills, G. D. 1999. Glyphosate injury, rainfastness, absorption, and translocation in purple nutsedge (Cyperus rotundus). Weed Technol 13:112119.
Cole, D. J. 1983. The effects of environmental factors on the metabolism of herbicides in plants. Asp. Appl. Biol 4:245252.
D'Anieri, P., Zedaker, S. M., Seiler, J. R., and Kreh, R. E. 1990. Glyphosate translocation and efficacy relationships in red maple sweetgum and loblolly pine seedlings. Forest. Sci 36:438447.
Devine, M. D. 1981. Glyphosate Uptake, Translocation and Distribution in Quackgrass (Agropyron repens (L.) Beauv.) and Canada Thistle (Cirsium arvense (L.) Scop). . University of Guelph, Guelph, Canada.
Dewey, S. A. and Appleby, A. P. 1983. A comparison between glyphosate and assimilate translocation patterns in tall morningglory (Ipomoea purpurea). Weed Sci 31:308314.
Feng, P. C. C., Ryerse, J. S., Jones, C. R., and Sammons, R. D. 1999. Analysis of surfactant leaf damage using microscopy and its relation to glyphosate or deuterium oxide uptake in velvetleaf (Abutilon theophrasti). Pestic. Sci 55:385386.
Gaskin, R. E. and Holloway, P. J. 1992. Some physicochemical factors influencing foliar uptake enhancement of glyphosate-mono(isopropylammonium) by polyoxyethylene surfactants. Pestic. Sci 34:195206.
Haslam, E. 1993. Shikimate Acid: Metabolism and Metabolites. Chichester, UK: J. Wiley. 387 p.
Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci 1:163.
Hillger, D. E., Bauman, T. T., and White, M. D. 2002. Proc. N. Cent. Weed Sci. Soc. conf. 57:28.
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol 11:354362.
Kapusta, G. R., Krausz, R. F., and Matthews, J. L. 1994. Soybean tolerance and summer annual weed control with glufosinate and glyphosate in resistant soybeans. Proc. N. Cent. Weed Cont. Conf 49:120.
Kitchen, L. M., Witt, W. W., and Rieck, C. E. 1981. Inhibition of δ-aminolevulinic acid synthesis by glyphosate. Weed Sci 29:571.
McWhorter, D. G., Jordan, T. N., and Wills, G. D. 1980. Translocation of 14C-glyphosate in soybeans (Glycine max) and johnsongrass (Sorghum halepense). Weed Sci 28:113118.
Padgette, S. R., Kolacz, K. H., and Delannay, X. et al. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:14511461.
Roggenbuck, F. C. and Penner, D. 1997. Efficacious adjuvants for glufosinate-ammonium, glyphosate-isopropylamine, and glyphosate-trimethylsulfonium. Weed Sci. Soc. Am. Abstr 37:31.
Royneberg, T., Balke, N. E., and Lund-Hoie, K. 1992. Effects of adjuvants and temperature on glyphosate absorption by cultured cells of velvetleaf (Abutilon theophrasti Medic). Weed Res 32:419428.
Russell, W. J. and Johnson, D. R. 1975. Translocation patterns in soybeans exposed to 14CO2 at four different time periods of the day. Crop Sci 15:7577.
Sandberg, D. L., Meggitt, W. F., and Penner, D. 1980. Absorption, translocation, and metabolism of 14C-glyphosate in several weed species. Weed Res 20:195200.
Satchivi, N. M., Wax, L. M., Stoller, E. W., and Briskin, D. P. 2000. Absorption and translocation of glyphosate isopropylamine and trimethylsulfonium in Abutilon theophrasti and Setaria faberi . Weed Sci 48:675679.
Sprankle, P., Meggit, W. F., and Penner, D. 1975. Absorption, action and translocation of glyphosate. Weed Sci 23:235240.
Wyrill, J. B. and Burnside, O. C. 1976. Absorption, translocation, and metabolism of 2,4-D and glyphosate in common milkweed and hemp dogbane. Weed Sci 24:557566.

Keywords

Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds

  • Jianmei Li (a1), Reid J. Smeda, Brent A. Sellers (a1) and William G. Johnson (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed