Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:33:29.778Z Has data issue: false hasContentIssue false

Implications of weed seedbank dynamics to weed management

Published online by Cambridge University Press:  12 June 2017

Robert G. Hartzler
Affiliation:
Department of Agronomy, Iowa State University, Ames, IA 50011
Frank Forcella
Affiliation:
North Central Soil Conservation Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Morris, MN 56267

Abstract

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.

Type
Symposium
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ball, D. A. 1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 40: 654659.Google Scholar
Bauer, T. A. and Mortensen, D. A. 1992. A comparison of economic and economic optimum thresholds for two annual weeds in soybean. Weed Technol. 6: 228235.Google Scholar
Bazzaz, F. A. 1990. Plant-plant interactions in successional environments. in Grace, J. B. and Tilman, D., eds. Perspectives on Plant Competition. San Diego, CA: Academic Press, pp. 239263.Google Scholar
Bello, I. A., Owen, M.D.K., and Hatterman-Valenti, H. M. 1995. Effect of shade on velvetleaf (Abutilon theophrasti) growth, seed production, and dormancy. Weed Technol. 9: 452455.Google Scholar
Benoit, D. L., Derksen, D. A., and Panneton, B. 1992. Innovative approaches to seedbank studies. Weed Sci. 40: 660669.CrossRefGoogle Scholar
Benoit, D. L., Kenkel, N. C., and Cavers, P. B. 1989. Factors influencing the precision of soil seed bank estimates. Can. J. Bot. 67: 28332840.Google Scholar
Biniak., B. M. and Aldrich, R. J. 1986. Reducing velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi) seed production with simulated-roller herbicide applications. Weed Sci. 34: 256259.Google Scholar
Bradbeer, J. W. 1988. Seed dormancy and germination. New York: Chapman and Hall. 146 p.Google Scholar
Brust, G. E. and House, G. J. 1988. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am. J. Altern. Agric. 3: 1925.Google Scholar
Buhler, D. D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean production in the central USA. Crop Sci. 35: 12471257.CrossRefGoogle Scholar
Buhler, D. D. and Gunsolus, J. L. 1996. Effect of date of preplant tillage and planting on weed populations and mechanical weed control in soybean (Glycine max). Weed Sci. 44: 373379.Google Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J. 84: 973978.CrossRefGoogle Scholar
Buhler, D. D., King, R. P., Swinton, S. M., Gunsolus, J. L., and Forcella, F. 1996a. Field evaluation of a bioeconomic model for weed management in corn (Zea mays). Weed Sci. 44: 915923.Google Scholar
Buhler, D. D. and Kohler, K. A. 1994. Tillage in the dark and emergence of annual weeds. Proc. North Central Weed Sci. Soc. 49: 142.Google Scholar
Buhler, D. D. and Mester, T. C. 1991. Effect of tillage systems on the emergence depth of giant foxtail (Setaria faberi) and green foxtail (Setaria viridis). Weed Sci. 39: 200203.Google Scholar
Buhler, D. D., Mester, T. C., and Kohler, K. A. 1996b. Effect of tillage and maize residue on the emergence of four annual weed species. Weed Res. 40: 153165.CrossRefGoogle Scholar
Buhler, D. D., Ramsel, R. E., Burnside, O. C., and Wicks, G. A. 1984. Survey of Weeds in Winter Wheat in Nebraska—1980 and 1981. Lincoln, NE: University of Nebraska Agricultural Research Division Publication MP 49. 38 p.Google Scholar
Burnside, O. C., Moomaw, R. S., Roeth, F. W., Wicks, G. A., and Wilson, R. G. 1986. Weed seed demise in soil in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 34: 248251.Google Scholar
Cavers, P. B. 1983. Seed demography. Can. J. Bot. 61: 35783590.Google Scholar
Cavers, P. B. 1995. Seed banks: memory in soil. Can. J. Soil Sci. 75: 1113.CrossRefGoogle Scholar
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Q. 2: 1320.Google Scholar
Cousens, R. and Mortimer, M. 1995. Processes involved in the regulation of population density. in Dynamics of Weed Populations. Cambridge, Great Britain: Cambridge University Press, pp. 86134.CrossRefGoogle Scholar
Cousens, R. and Moss, S. R. 1990. A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Res. 30: 6170.Google Scholar
Crawley, M. J. 1992. Seed predators and plant population dynamics. in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, Great Britain: CAB International, pp. 157191.Google Scholar
Currie, R. S. and Peeper, T. F. 1988. Combine harvesting affects weed seed germination. Weed Technol. 2: 499504.CrossRefGoogle Scholar
Dekker, J., Dekker, B., Hilhorst, H., and Karssen, C. 1996. Weedy adaptation in Setaria spp.; IV. Changes in the germinative capacity of S. faberii (Poaceae) embryos with development from anthesis to after abscission. Am. J. Bot. 83: 979991.Google Scholar
Derksen, D. A., Lafond, G. P., Thomas, A. G., Loeppky, H. A., and Swanton, C. J. 1993. Impact of agronomic practices on weed communities: tillage systems. Weed Sci. 41: 409417.CrossRefGoogle Scholar
Dyer, W. E. 1995. Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci. 43: 498503.Google Scholar
Egley, G. H. 1986. Stimulation of weed seed germination in soil. Rev. Weed Sci. 2: 6789.Google Scholar
Egley, G. H. and Duke, S. O. 1985. Physiology of weed seed dormancy and germination. in Duke, S. O., ed. Weed Physiology. Volume 1. Boca Raton, FL: CRC Press, pp. 2764.Google Scholar
Fenner, M. 1985. Chapter 4. in Seed Ecology. New York, NY: Chapman Hall, pp. 87104.Google Scholar
Forcella, F., King, R. P., Swinton, S. M., Buhler, D. D., and Gunsolus, J. L. 1996a. Multiyear validation of a decision aid for integrated weed management. Weed Sci. 44: 650661.CrossRefGoogle Scholar
Forcella, F. and Lindstrom, M. J. 1988. Movement and germination of weeds in ridge-till crop production systems. Weed Sci. 36: 5659.Google Scholar
Forcella, F., Wilson, R. G., Dekker, J., et al. 1996b. Weed seedbank emergence across the corn belt, 1991-1994. Weed Sci. (In press).Google Scholar
Forcella, F., Wilson, R. G., Renner, K. A., Dekker, J., Harvey, R. G., Alm, D. A., Buhler, D. D., and Cardina, J. A. 1992. Weed seedbanks of the U.S. Cornbelt: magnitude, variation, emergence, and application. Weed Sci. 40: 636644.Google Scholar
Gupta, S. C., Larson, W. E., and Linden, D. R. 1983. Effect of tillage and surface residues on soil temperature. I. Upper boundary temperature. Soil Sci. Soc. Am. J. 47: 12121218.CrossRefGoogle Scholar
Gutterman, Y. 1985. Flowering, seed development, and the influences during seed maturation on seed germination of annual weeds. in Duke, S. O., ed. Weed Physiology. Volume 1. Boca Raton, FL: CRC Press, pp. 125.Google Scholar
Gutterman, Y. 1992. Environmental conditions during seed maturation affecting seed germination. Acta Hortic. 314: 179187.CrossRefGoogle Scholar
Harmon, G. W. and Keim, F. D. 1934. The percentage and viability of weed seeds recovered in the feces of farm animals and their longevity when buried in manure. J. Am. Soc. Agron. 26: 762767.Google Scholar
Hartmann, K. M. and Nezadal, W. 1990. Photocontrol of weeds without herbicides. Naturwissenschaften 77: 158163.CrossRefGoogle Scholar
Hartzler, R. G. 1996. Velvetleaf (Abutilon theophrasti) population dynamics following a single year&s seed rain. Weed Technol. 10: 581586.CrossRefGoogle Scholar
Hartzler, R. G. and Roth, G. W. 1993. Effect of prior year&s weed control on herbicide effectiveness in corn (Zea mays). Weed Technol. 7: 611614.Google Scholar
King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34: 972979.Google Scholar
Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 3: 4252.Google Scholar
Lang, A. G., Early, J. D., Martin, G. C., and Darnell, R. L. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hortic. Sci. 22: 371377.Google Scholar
Liebman, M. and Dyck, E. 1993. Grop rotation and intercropping strategies for weed management. Ecol. Applic. 3: 92122.Google Scholar
Lindquist, J. L., Maxwell, B. D., Buhler, D. D., and Gunsolus, J. L. 1995. Velvetleaf (Abutilon theophrasti) recruitment, survival, seed production, and interference in soybean (Glycine max). Weed Sci. 43: 226232.CrossRefGoogle Scholar
Lueschen, W. E. and Andersen, R. N. 1980. Longevity of velvetleaf (Abutilon theophrasti) seed in soil under agricultural practices. Weed Sci. 28: 341346.CrossRefGoogle Scholar
Lybecker, D. W., Schweizer, E. E., and King, R. P. 1991. Weed management decisions in corn based on bioeconomic modeling. Weed Sci. 39: 124129.Google Scholar
Mortensen, D. A., Johnson, G. A., and Young, L. J. 1993. Weed distribution in agricultural fields. in Robert, P. C., Rust, R. H., and Larson, W. E., eds. Soil Specific Crop Management. Madison, WI: American Society of Agronomy, pp. 113123.Google Scholar
Mt. Pleasant, J. and Schlather, K. J. 1994. Incidence of weed seed in cow (Bos sp.) manure and its importance as a weed source for cropland. Weed Technol. 8: 304310.CrossRefGoogle Scholar
Murdoch, A. J. and Ellis, R. H. 1992. Longevity, viability and dormancy. in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, Great Britain: CAB International, pp. 193229.Google Scholar
Nikolaeva, M. G. 1977. Factors controlling the seed dormancy pattern. in Khan, A. A., ed. The Physiology and Biochemistry of Seed Dormancy and Germination. Amsterdam: North Holland Publishing, pp. 5174.Google Scholar
Norris, R. F. 1992. Have ecological and biological studies improved weed control strategies? Proc. First Int. Weed Control Congr. 1: 733.Google Scholar
Ogg, A. G. Jr., and Dawson, J. H. 1984. Time of emergence of eight weed species. Weed Sci. 32: 327335.CrossRefGoogle Scholar
Pareja, M. R., Staniforth, D. W., and Pareja, G. P. 1985. Distribution of weed seed among soil structural units. Weed Sci. 33: 182189.Google Scholar
Pons, T. L. 1991. Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Funct. Ecol. 5: 669675.Google Scholar
Reader, R. J. 1991. Control of seedling emergence by ground cover: a potential mechanism involving seed predation. Can. J. Bot. 69: 20842087.CrossRefGoogle Scholar
Roberts, H. A. 1963. Studies on the weeds of vegetable crops. III. Effect of different primary cultivations on the weed seeds in the soil. J. Ecol. 51: 8395.Google Scholar
Roberts, H. A. and Ricketts, M. E. 1979. Quantitative relationships between the weed flora after cultivation and the seed population in the soil. Weed Res. 19: 269275.Google Scholar
Robinson, R. G. 1949. Annual weeds, their viable seed populations in the soil and their effects on yields of oats, wheat, and flax. Agron. J. 41: 513518.Google Scholar
Salzman, F. P., Smith, R. J., and Talbert, R. E. 1988. Suppression of red rice (Oryza sativa) seed production with fluazifop and quizalofop. Weed Sci. 36: 800803.Google Scholar
Schreiber, M. M. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci. 40: 645653.Google Scholar
Schweizer, E. E. and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32: 7683.CrossRefGoogle Scholar
Scopel, A. L., Ballare, C. L., and Radosevich, S. R. 1994. Photostimulation of seed germination during soil tillage. New Phytol. 126: 145152.Google Scholar
Senseman, S. A. and Oliver, L. R. 1993. Flowering patterns, seed production, and somatic polymorphism of three weed species. Weed Sci. 41: 418425.Google Scholar
Staricka, J. A., Burford, P. M., Allmaras, R. R., and Nelson, W. W. 1990. Tracing the vertical distribution of simulated shattered seeds as related to tillage. Agron. J. 82: 11311134.Google Scholar
Stevens, O. A. 1957. Weights of seeds and numbers per plant. Weeds 5: 4655.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21: 574580.Google Scholar
Swinton, S. M. and King, R. P. 1994. A bioeconomic model for weed management in corn and soybean. Agric. Syst. 44: 313335.Google Scholar
Taylorson, R. B. 1982. Anesthetic effects on secondary dormancy and phytochrome responses in Setaria faberi seeds. Plant Physiol. 70: 882886.Google Scholar
Taylorson, R. B. 1987. Environmental and chemical manipulation of weed seed dormancy. Rev. Weed Sci. 3: 135154.Google Scholar
Thomas, A. G. and Frick, B. L. 1993. Influence of tillage systems on weed abundance in southwestern Ontario. Weed Technol. 7: 699705.CrossRefGoogle Scholar
Warnes, D. D. and Andersen, R. N. 1984. Decline of wild mustard (Brassica kaber) seeds in soil under various cultural and chemical practices. Weed Sci. 32: 214217.CrossRefGoogle Scholar
Wesson, G. and Wareing, P. F. 1969. The induction of light sensitivity in weed seeds by burial. J. Exp. Bot. 20: 414425.Google Scholar
Wilson, B. J. and Lawson, H. M. 1992. Seedbank persistence and seedling emergence of seven weed species in autumn-sown crops following a single year&s seeding. Ann. Appl. Bot. 120: 105116.Google Scholar
Wilson, R. G. 1988. Biology of weed seeds in the soil. in Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC Press, pp. 2539.Google Scholar
Wilson, R. G., Jarvi, K. J., Seymour, R. C., Witkowski, J. F., Danielson, S. D., and Wright, R. F. 1992. Annual Weed Growth Across Nebraska. Lincoln, NE: University of Nebraska Agricultural Research Division, Research Bull. 314-F. 53 p.Google Scholar
Wilson, R. G., Kerr, E. D., and Nelson, L. A. 1985. Potential for using weed seed content in the soil to predict future weed problems. Weed Sci. 33: 171175.Google Scholar
Winkle, M. E., Leavitt, J.R.C., and Burnside, O. C. 1981. Effects of weed density on herbicide absorption and bioactivity. Weed Sci. 29: 405409.Google Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 40: 429433.Google Scholar