Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-02T16:24:35.026Z Has data issue: false hasContentIssue false

Hazelnut abscission is delayed by simulated drift of 2,4-D

Published online by Cambridge University Press:  02 August 2023

Marcelo L. Moretti*
Affiliation:
Associate Professor, Department of Horticulture, Oregon State University, Corvallis, OR, USA
Larissa Larroca de Souza
Affiliation:
Former Graduate Student, Department of Horticulture, Oregon State University, Corvallis, OR, USA
*
Corresponding author: Marcelo L. Moretti; Email: marcelo.moretti@oregonstate.edu

Abstract

The herbicide 2,4-D is commonly used for sucker control in hazelnut (Corylus avellana L.). However, the use of 2,4-D for sucker control has been implicated in delaying natural abscission in hazelnut. Hazelnuts naturally abscise and are collected from the orchard floor. Delays in abscission may reduce nut quality due to the onset of the rainy season, increasing mold and mud in the nuts. The effect of basal-directed applications of 2,4-D on hazelnut abscission, yield, and quality was assessed. In the first study, four basal-directed applications of 2,4-D (1.06 kg ae ha−1) did not affect hazelnut abscission, yield, or quality compared with glufosinate (1.1 kg ai ha−1) or manual pruning. In a second 3-yr study, a single yearly simulated drift of 2,4-D to the tree canopy at 0.06 and 0.6 mg L−1 increased the growing degree-day requirement from 50 to 141 to reach 50% hazelnut abscission, compared with the nontreated control. This is the equivalent of 5 to 15 calendar days. No effect was observed in the third year of the study when the simulated drift was not performed. No differences in abscission were observed with basal-directed applications of 2,4-D at rates up to 4.4 kg ha−1 when applied four times each season during all 3 yr of the study. Simulated drift reduced hazelnut yield by up to 37% and reduced the percentage of marketable nuts during 1 yr of the study. No effect on average kernel weight was observed. However, 2,4-D drift did delay hazelnut abscission, highlighting the importance of drift control measures.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Timothy L. Grey, University of Georgia

References

Al-Khatib, K, Parker, R, Fuerst, EP (1992) Sweet cherry (Prunus avium) response to simulated drift from selected herbicides. Weed Technol 6:975979 CrossRefGoogle Scholar
Anonymous (1996) Saber® herbicide product label. Loveland Publication No. 34704-803. Greeley, CO: Loveland Products Inc. 21pGoogle Scholar
Baskerville, GL, Emin, P (1969) Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514517 CrossRefGoogle Scholar
Bates, D, Mächler, M, Bolker, B, Walker, S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:148 Google Scholar
Bhatti, MA, Al-Khatib, K, Parker, R (1996) Wine grape (Vitis vinifera) response to repeated exposure of selected sulfonylurea herbicides and 2,4-D. Weed Technol 10:951956 CrossRefGoogle Scholar
Bhatti, MA, Al-Khatib, K, Parker, R (1997) Wine grape (Vitis vinifera) response to fall exposure of simulated drift from selected herbicides. Weed Technol 11:532536 CrossRefGoogle Scholar
Bish, M, Oseland, E, Bradley, K (2021) Off-target pesticide movement: a review of our current understanding of drift due to inversions and secondary movement. Weed Technol 35:345356 CrossRefGoogle Scholar
de Souza, LL, Moretti, ML (2020) Chemical control of suckers in hazelnut orchards of western Oregon. Weed Technol 34:863869 CrossRefGoogle Scholar
Dintelmann, BR, Warmund, MR, Bish, MD, Bradley, KW (2020) Investigations of the sensitivity of ornamental, fruit, and nut plant species to driftable rates of 2,4-D and dicamba. Weed Technol 34:331341 CrossRefGoogle Scholar
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193206 CrossRefGoogle Scholar
Elzebroek, T, Wind, K (2008) Edible fruits and nuts. Pages 496 in Elzebroek, ATG, ed. Guide to Cultivated Plants. Cambridge, UK: CABI CrossRefGoogle Scholar
Felsot, AS, Unsworth, JB, Linders, JB, Roberts, G, Rautman, D, Harris, C, Carazo, E (2010) Agrochemical spray drift; assessment and mitigation—a review. J Environ Sci Health B 46:123 CrossRefGoogle Scholar
Fox, J, Weisberg, S, Adler, D, Bates, D, Baud-Bovy, G, Ellison, S, Firth, D, Friendly, M, Gorjanc, G, Graves, S (2022) Package ‘car’. https://r-forge.r-project.org/projects/car. Accessed: January 5, 2023Google Scholar
Frenkel, C, Dyck, R (1973) Auxin inhibition of ripening in Bartlett pears. Plant Physiol 51:69 CrossRefGoogle ScholarPubMed
Germain, E (1994) The reproduction of hazelnut (Corylus avellana L.): a review. Pages 195210 in III International Congress on Hazelnut. Alba, Italy: International Society of Horticultural Sciences Google Scholar
Haring, SC, Ou, J, Al-Khatib, K, Hanson, BD (2022) Grapevine injury and fruit yield response to simulated auxin herbicide drift. HortScience 57:384388 CrossRefGoogle Scholar
Inaba, A, Ishida, M, Sobajima, Y (1974) Regulation of ripening in grapes by hormone treatments (agriculture). The scientific reports of Kyoto Prefectural University. Agriculture 26:2531 Google Scholar
Khandaker, MM, Osman, N, Hossain, AS, Faruq, G, Boyce, AN (2015) Effect of 2,4-D on growth, yield and quality of wax apple (Syzygium samarangense, (Blume) Merrill & L.M. Perry cv. Jambu Madu) fruits. Sains Malays 44:1431–1439CrossRefGoogle Scholar
Kwong, FY, Lagerstedt, H (1976) Translocation of ethephon in the filbert (Corylus avellana L.) HortScience 11:264265 CrossRefGoogle Scholar
Larocca de Souza, L, Moretti, ML (2020) Carrier volume and nozzle effect on 2,4-D and glufosinate performances in hazelnut sucker control. HortScience 55:18481852 CrossRefGoogle Scholar
Marini, RP, Byers, RE, Sowers, DL (1993) Repeated applications of NAA control preharvest drop of ‘Delicious’ apples. J Hortic Sci 68:247253 CrossRefGoogle Scholar
Mehlenbacher, SA, Smith, DC, McCluskey, RL (2011) ‘Jefferson’ hazelnut. HortScience 46:662664 CrossRefGoogle Scholar
Mohseni-Moghadam, M, Wolfe, S, Dami, I, Doohan, D (2016) Response of wine grape cultivars to simulated drift rates of 2,4-D, dicamba, and glyphosate, and 2,4-D or dicamba plus glyphosate. Weed Technol 30:807814 CrossRefGoogle Scholar
Moretti, ML (2021) POST control of Italian ryegrass in hazelnut orchards. Weed Technol 35:638643 CrossRefGoogle Scholar
Ogg, AG, Ahmedullah, MA, Wright, GM (1991) Influence of repeated applications of 2,4-D on yield and juice quality of Concord grapes (Vitis labruscana). Weed Sci 39:284295 CrossRefGoogle Scholar
Olsen, J (2013) Growing Hazelnut in the Pacific Northwest: Orchard Nutrition. Corvallis, OR: Oregon State University Extension Service AEB EM 9080Google Scholar
Olsen, JL, Peachey, RE (2013) Growing Hazelnuts in the Pacific Northwest: Orchard Floor Management. Corvallis, OR: Oregon State University Extension Service AEB EM 9079Google Scholar
[ODA] Oregon Department of Agriculture (2009) Pesticide Use Reporting System 2008 Annual Report. https://digital.osl.state.or.us/islandora/object/osl:25635. Accessed: January 10, 2023Google Scholar
Peterson, MA, McMaster, SA, Riechers, DE, Skelton, J, Stahlman, PW (2016) 2,4-D past, present, and future: a review. Weed Technol 30:303345 CrossRefGoogle Scholar
Pscheidt, JW, Heckert, S, Wiseman, M, Jones, L (2019) Fungi associated with and influence of moisture on development of kernel mold of hazelnut. Plant Dis 103:922928 CrossRefGoogle ScholarPubMed
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing Google Scholar
Ritz, C, Strebig, J, Ritz, MC (2015) Package ‘drc’. http://www.bioassay.dk. Accessed: February 16, 2023Google Scholar
Robinson, E, Fox, LL (1978) 2,4-D herbicides in Central Washington. J Air Pollut Control Assoc 28:10151020 CrossRefGoogle Scholar
Ronchi, C, Silva, A, Terra, A, Miranda, G, Ferreira, L (2005) Effect of 2,4-dichlorophenoxyacetic acid applied as a herbicide on fruit shedding and coffee yield. Weed Res 45:4147 CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture (2016) Filbert/Hazelnut Kernels and Filberts in the Shell—Inspection Instruction. https://www.ams.usda.gov/sites/default/files/media/FilbertHazelnut_Inspection_Instructions%5B1%5D.pdf. Accessed: January 10, 2022Google Scholar
[USDA] U.S. Department of Agriculture (2023) Filberts in the Shell Grades and Standards. https://www.ams.usda.gov/grades-standards/filberts-shell-grades-and-standards. Accessed: January 20, 2023Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2023) Agricultural Chemical Use. https://www.nass.usda.gov. Accessed: August 11, 2023Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2021) Noncitrus Fruits and Nuts 2020 Summary. Washington, DC: U.S. Department of Agriculture National Agricultural Statistics Service. 88 pGoogle Scholar
Weigle, J, Denisen, E, Sherwood, C (1970) 2,4-D as an air pollutant: effects on market quality of several horticultural crops. J Am Soc Hortic Sci 5:213214 CrossRefGoogle Scholar
Wells, ML, Prostko, EP, Carter, OW (2019) Simulated single drift events of 2,4-D and dicamba on pecan trees. HortTechnology 29:360366 CrossRefGoogle Scholar
Zur, A, Goren, R (1977) Reducing preharvest drop of ‘Temple’orange fruits by 2,4-D—role of cellulase in the calyx abscission zone. Sci Hortic 7:237248 CrossRefGoogle Scholar
Supplementary material: Image

Moretti and de Souza supplementary material

Moretti and de Souza supplementary material

Download Moretti and de Souza supplementary material(Image)
Image 38.6 KB