Skip to main content Accessibility help
×
Home

Growth Characterization of Kochia (Kochia scoparia) with Substitutions at Pro197 or Trp574 Conferring Resistance to Acetolactate Synthase–Inhibiting Herbicides

  • Anne Légère (a1), F. Craig Stevenson (a2), Hugh J. Beckie (a1), Suzanne I. Warwick (a3), Eric N. Johnson (a4), Brett Hrynewich (a1) and Chris Lozinski (a1)...

Abstract

Over 90% of Canadian kochia populations are resistant to acetolactate synthase (ALS)– inhibiting herbicides. We questioned whether the target site–based resistance could affect plant growth and competitiveness. Homozygous F2 herbicide-resistant (HR) kochia plants with an amino acid substitution at Trp574 (sources: Alberta [AB], Saskatchewan [SK], and Manitoba [MB]), or Pro197 (MB, AB with two populations) were grown in replacement series with homozygous F2 herbicide-susceptible (HS) plants from the corresponding heterogeneous population (total: six populations). In pure stands, growth of HR plants from AB and SK was similar to that of HS plants, regardless of mutation; conversely, MB2-HR plants (Trp574Leu) developed more slowly and were taller than MB2-HS plants. Final dry weight of HR plants in pure stands was similar across all six populations, whereas that for HS plants in pure stands and HR–HS plants in mixed stands (50–50%) varied with population. Results for AB and SK populations suggest little impact of either ALS mutation on kochia growth, whereas those for MB lines would suggest an unidentified factor (or factors) affecting the HS, HR, or both biotypes. The variable response within and between lines, and across HS biotypes highlights the importance of including populations of various origins and multiple susceptible controls in HR biotype studies.

Copyright

Corresponding author

Corresponding author's E-mail: anne.legere@agr.gc.ca

References

Hide All
Ashigh, J. and Tardif, F. J. 2009. An amino acid substitution at position 205 of acetohydroxyacid synthase reduces fitness under optimal light in resistant populations of Solanum ptychanthum . Weed Res. 49: 479489.
Ashigh, J. and Tardif, F. J. 2011. Water and temperature stress impact fitness of acetohydroxyacid synthase-inhibiting herbicide-resistant populations of eastern black nightshade (Solanum ptychanthum). Weed Sci. 59: 341348.
Beckie, H. J., Blackshaw, R. E., Low, R., Hall, L. M., Sauder, C. A., Martin, S., Brandt, R. N., and Shirriff, S. W. 2013. Glyphosate- and acetolactate synthase inhibitor-resistant kochia (Kochia scoparia) in western Canada. Weed Sci. DOI: 10.1614/WS-D-12-00116.1.
Beckie, H. J., Johnson, E. N., and Légère, A. 2012. Negative cross-resistance of acetolactate synthase inhibitor-resistant kochia (Kochia scoparia) to protoporphyrinogen oxidase and hydroxyphenylpyruvate dioxygenase–inhibiting herbicides. Weed Technol. 26: 570574.
Beckie, H. J. and Tardif, F. J. 2012. Herbicide cross resistance in weeds. Crop Prot. 35: 1528.
Beckie, H. J., Warwick, S. I., Sauder, C. A., Lozinski, C., and Shirriff, S. 2011. Occurrence and molecular characterization of acetolactate synthase (ALS) inhibitor-resistant kochia (Kochia scoparia) in western Canada. Weed Technol. 25: 170175.
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Biol. Chem. 270: 1738117385.
Chang, A. K. and Duggleby, R. G. 1998. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem. J. 333: 765777.
Christoffoleti, P. J., Westra, P., and Moore, F. III. 1997. Growth analysis of sulfonyl-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 45: 691695.
Cousens, R. D., Gill, G. S., and Speijers, E. J. 1997. Comment: number of sample populations required to determine the effects of herbicide resistance on plant growth and fitness. Weed Res. 37: 14.
Duggleby, R. G., Pang, S. S., Yu, H., and Guddat, L. W. 2003. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Eur. Biochem. 270: 28952904.
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonyl-resistant Kochia scoparia L. accessions is associated with elevated seed level of branched chain amino acid. Weed Sci. 41: 1822.
Eberlein, C. V., Guttieri, M. J., Berger, P. H., Fellman, J. K., Mallory-Smith, C. A., Thill, D. C., Baerg, R. J., and Belknap, W. R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci. 47: 383392.
Friesen, L. F., Beckie, H. J., Warwick, S. I., and Van Acker, R. C. 2009. The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can. J. Plant Sci. 89: 141167.
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonyl urea and alternative herbicides. Weed Sci. 41: 100106.
Friesen, M. L. and von Wettberg, E. J. 2010. Adapting genomics to study evolution and ecology of agricultural systems. Curr. Opin. Plant Biol. 13: 119125.
Goulart, I.C.G.R., Matzenbacher, F. O., and Merotto, A. Jr. 2012. Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations. Weed Res. 52: 224232.
Guttieri, M. J., Eberlein, C. V., and Souza, E. J. 1998. Inbreeding coefficients of field populations of Kochia scoparia using chlorsulfuron resistance as a phenotypic marker. Weed Sci. 46: 521525.
Hanzawa, Y., Money, T., and Bradley, D. 2005. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. U. S. A. 102: 77487753.
Harper, J. L. 1977. Population Biology of Plants. London, UK: Academic. 892 p.
Heap, I. M. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: August 2012.
Hereford, J. 2009. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173: 579588.
Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, Th., Hack, H., and Stauss, R. 1997. Use of extended BBCH scale—general for the descriptions of the growth stage of mono- and dicotyledonous weed species. Weed Res. 37: 433441.
Lamego, F. P., Vidal, R. A., and Burgos, N. R. 2011. Competitiveness of ALS inhibitor resistant and susceptible biotypes of greater beggarticks (Bidens subalternans). Planta Daninha 29: 457464.
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada Weed Survey Series Publ. 05-1. 395 p.
Li, M., Yu, Q., Han, H., Vila-Aiub, M., and Powles, S. B. 2012. ALS herbicide resistance in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag. Sci. DOI: 10.1002/ps.3419.
Mengistu, L. W. and Messermith, C. G. 2002. Genetic diversity of kochia. Weed Sci. 50: 498503.
Poston, D. H., Wilson, H. P., and Hines, T. E. 2002. Growth and development of imidazolinone-resistant and -susceptible smooth pigweed biotypes. Weed Sci. 50: 485493.
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84: 227235.
Renton, M. 2013. Shifting focus from the population to the individual as a way forward in understanding, predicting and managing the complexities of resistance to pesticides. Pest Manag. Sci. 69: 171175.
Roux, F., Gasquez, J., and Reboud, X. 2004. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166: 449460.
Saari, L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonyl urea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.
SAS Institute, Inc. 2004. SAS/STAT 9.1 User's Guide. Cary, NC: SAS Institutetra. 5121 p.
Sibony, M. and Rubin, B. 2003. The ecological fitness of ALS-resistant Amaranthus retroflexus and multiple-resistant Amaranthus blitoides . Weed Res. 43: 4047.
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1995. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43: 95102.
Tardif, F. J., Rejcan, I., and Costea, M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii . New Phytol. 169: 251264.
Thompson, C. R., Thill, D. C., and Shafii, B. 1994a. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 5056.
Thompson, C. R., Thill, D. C., and Shafii, B. 1994b. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 172179.
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50: 700712.
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184: 751767.
Vila-Aiub, M. M., Neve, P., and Roux, F. 2011. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107: 386394.
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56: 797806.
Wiersma, A., Westra, P., Leach, J. E., and Preston, C. 2011. Response Patterns of Suspected Glyphosate Resistant Kochia Accessions. WSSA Abstracts, No. 363. https://wssaabstracts.com/user/home.php. Accessed: October 2012.
Yin, X., Goudriaan, J., Lanting, E. A., Vos, J., and Spiertz, H. J. 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91: 361371.
Yu, Q., Han, H., Li, M., Walsh, M. J., and Powles, S. B. 2012. Resistance evaluation for herbicide-resistance-endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Res. 52: 178186.
Yu, Q., Han, H., Vila-Aiub, M. M., and Powles, S. B. 2010. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Exp. Bot. 61: 39253934.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed