Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T18:32:47.619Z Has data issue: false hasContentIssue false

Formulation of mycoherbicidal strains of Fusarium oxysporum

Published online by Cambridge University Press:  12 June 2017

R. D. Lumsden
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
J. A. Lewis
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
S. M. Poch
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
B. A. Bailey
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705

Abstract

Biomass abundant in chlamydospores obtained by liquid fermentation of mycoherbicidal strains of Fusarium oxysporum was incorporated into alginate prills with various food substrates and granular formulations such as corn flour : starch, wheat flour : kaolin, rice : wheat flour, and rice : wheat gluten formulations. These fungal strains cause vascular wilts in coca (Erythroxylum coca var. coca) and in poppy (Papavar somniferum). Fungal strain, formulation method, and interaction of these two parameters significantly affected the shelf life of the formulations at room temperature as well as the ability to form secondary propagules on 1% water agar. In bioassays, there were no significant differences among F. oxysporum strain EN4-S formulations in their ability to colonize root tissue or the rhizosphere of E. coca seedlings. The study indicates that most of the formulations meet at least three of the four criteria important for biological control agents to be effective: low losses in viability during the formulation process, satisfactory shelf life at room temperature, abundant secondary chlamydospore formation, and rhizosphere colonization.

Type
Special Topics
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbasher, A. A., Kroschel, J., and Sauerborn, J. 1995. Microorganisms of Striga hermonthica in northern Ghana with potential as biocontrol agents. Biocontrol Sci. Technol. 5: 157161.Google Scholar
Bailey, B. A., Hebbar, K. P., Strem, M., Darlington, L. C., and Lumsden, R. D. 1997. An alginate prill formulation of Fusarium oxysporum Schlechtend: Fr. f. sp. erytbroxli for biocontrol of Erythroxylum coca var. coca. Biocontrol Sci. Technol. 7: 423435.Google Scholar
Boyette, M., Abbas, H. K., and Connick, W. J. Jr. 1993. Evaluation of Fusarium oxysporum as a potential bioherbicide for sicklepod (Cassia obtusifolia), coffee senna (Coccidentalis), and hemp sesbania (Sesbania exaitata). Weed Sci. 41: 678681.Google Scholar
Connick, W. J. Jr., Boyette, C. D., and McAlpine, J. R. 1991. Formulation of mycoherbicides using a pasta-like process. Biol. Control 1: 281287.Google Scholar
Connick, W. J. Jr., Daigle, D. J., Boyette, C. D., Williams, K. S., Vinyard, B. T., and Quimby, P. C. Jr. 1996. Water activity and other factors that affect the viability of Colletotrichum truncatum conidia in wheat flour-Kaolin granules (“Pesta”). Biocontrol Sci. Technol. 6: 277284.Google Scholar
Daniel, J. T., Templeton, G. E., Smith, R. J. Jr., and Fox, W. T. 1973. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Sci. 21: 303307.Google Scholar
Fravel, D. R., Lewis, J. A., and Chittams, J. L. 1995. Alginate prill formulations of Talaromyces flavus with organic carriers for biocontrol of Verticillium dahliae . Phytopathology 85: 165168.Google Scholar
Fravel, D. R., Marois, J. J., Lumsden, R. D., and Connick, W. J. Jr. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75: 774777.CrossRefGoogle Scholar
Hebbar, K. P., Lewis, J. A., Poch, S. M., and Lumsden, R. D. 1996. Agricultural byproducts as substrates for growth, conidiation, and chlamydospore formation by a potential mycoherbicide, Fusarium oxysporum strain EN4. Biocontrol Sci. Technol. 6: 263275.Google Scholar
Hebbar, K. P., Lewis, J. A., Poch, S. M., and Lumsden, R. D. 1997. Liquid fermentation to produce biomass of mycoherbicidal strains of Fusarium oxysporum . Appl. Microbiol. Biotechnol. 48: 714719.Google Scholar
Hildebrand, D. C. and McCain, A. H. 1978. The use of various substances for large scale production of Fusarium oxysporum f. sp. cannabis inoculum. Phytopathology 68: 10991101.Google Scholar
Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from narural soil. Rev. Plant Prot. Res. 8: 115125.Google Scholar
Kremer, R. J. and Schulte, L. K. 1989. Influence of chemical treatment and Fusarium oxysporum on velvetleaf (Abutilon theophrasti). Weed Technol. 32: 369374.CrossRefGoogle Scholar
Lewis, J. A. and Larkin, R. P. 1997. Extruded granular formulation with biomass of biocontrol Gliocladium virens and Trichoderma spp. to reduce damping-off of eggplant caused by Rhizoctonia solami and saprophytic growth of the pathogen in soilless mix. Biocontrol Sci. Technol. 7: 4960.Google Scholar
Lewis, J. A. and Papavizas, G. C. 1985. Characteristics of alginate pellets formulated with Trichoderma and Gliocladium and their effect on the proliferation of the fungi in the soil. Plant Pathol. 34: 571577.Google Scholar
McCain, A. H. and Noviello, C. 1985. Biological control of Cannabis sativa . Pages 635-642 in Delfosse, E. S., ed. Proceedings of the VI Symposium on Biological Control of Weeds. August 19–25, 1984. Vancouver, Canada: Agriculture Canada.Google Scholar
Pandey, A. K., Farkya, S., and Rajak, R. C. 1992. A preliminary evaluation of Fusarium spp. for biological control of Parthenium. J. Indian Bot. Soc. 71: 103105.Google Scholar
Pilgeram, A. L., Anderson, T. W., Schultz, M. T., Dolgovskaya, M., and Sands, D. C. 1995. An effective host-specific pathogen of Papaver spp. Phytopathology 85: 1118.Google Scholar
Sands, D. C., Ford, E. J., Miller, R. V., Sally, B. K., McCarthy, M., Anderson, T. W., Weaver, M. B., Morgan, C. T., and Darlington, L. C. 1997. Characrerization of a vascular wilt of Erytbroxylum coca caused by Fusarium oxysporum f. sp. erythroxyli forma specialis nova. Plant Dis. 81: 501504.Google Scholar
[SAS) Statistical Analysis Systems. 1990. SAS User's Guide: Statistics. Volume 2. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Schippers, B. and Van Eck, W. H. 1981. Formation and survival of chlamydospores in Fusarium . Pages 250-260 in Nelson, P. E., Toussoun, T. A., and Cook, R. J., eds. Fusarium, Diseases, Biology and Taxonomy. University Park, PA: Pennsylvania State University Press.Google Scholar
Shasha, B. S. and Dunkle, R. L. 1987. Starch encapsulation of entomopathogens. U.S. patent 4,859,377.Google Scholar
Weidemann, G. J., Boyette, C. D., and Templeton, G. E. 1995. Utilization criteria for mycoherbicides. Pages 238-251 in Biorational Pest Control Agents. Washington, DC: American Chemical Society.Google Scholar
Weidemann, G. J. and Templeton, G. E. 1988. Efficacy and soil persistence of Fusarium solani f. sp. Cucurbitae for control of Texas gourd (Cucurbita texana). Plant Dis. 72: 3638.Google Scholar