Skip to main content Accessibility help

Estimation of Crop Yield Loss Due to Interference by Multiple Weed Species

  • Scott M. Swinton (a1), Douglas D. Buhler (a2), Frank Forcella (a3), Jeffrey L. Gunsolus (a4) and Robert P. King (a5)...


Previous efforts to model crop yield loss from multiple weed species constructed competitive indices based on yield loss from individual weed species. Our model uses a multispecies modification of Cousens’ rectangular hyperbolic yield function to estimate a nonlinear competitive index for weed-crop interference. Results from 13 Minnesota and Wisconsin data sets provide measures of the relative competitiveness of mixed green and yellow foxtails, common lambsquarters, redroot pigweed, velvetleaf, and several other weed species. Competition coefficient estimates are stable over years, but not locations.



Hide All
1. Auld, B. A., Menz, K. M., and Tisdell, C. A. 1987. Weed Control Economics. Academic Press, London.
2. Beckett, T. H., Stoller, E. W., and Wax, L. M. 1988. Interference of four annual weeds in corn (Zea mays). Weed Sci. 36:764769.
3. Buhler, D. D. Unpublished data. 1989–1990. Rosemount, MN.
4. Chandler, J. M., Hamill, A. S., and Thomas, A. G. 1984. Crop losses due to weeds in Canada and the United States. Weed Sci. Soc. Am., Champaign, IL.
5. Coble, H. D. 1986. Development and implementation of economic thresholds for soybean. Pages 295307 in Frisbie, R. E. and Adkisson, P. L., eds. CIPM: Integrated Pest Management on Major Agricultural Systems. Texas A & M Univ., College Station, TX.
6. Cousens, R. 1986. A simple model related yield loss to weed density. Ann. Appl. Biol. 107:239252.
7. Cousens, R., Doyle, C. J., Wilson, B. J., and Cussans, G. W. 1986. Modeling the economics of controlling Avena fatua in winter wheat. Pestic. Sci. 17:112.
8. Dew, D. A. An index of competition for estimating crop loss due to weeds. 1972. Can. J. Plant Sci. 52:921927.
9. Doyle, C. J., Cousens, R., and Moss, S. R. 1986. A mode) of the economics of controlling Alopecurus myosuroides Huds. in winter wheat. Crop. Prot. 5:143150.
10. Forcella, F. and Lindstrom, M. J. 1988. Movement and germination of weed seeds in ridge-till crop production systems. Weed Sci. 36:5659.
11. Gunsolus, J. L. Unpublished data. 1989–1991. Lamberton, Morris, and Waseca, MN.
12. Kells, J. J. and Black, J. R. 1990. CORNHERB: Herbicide options program for weed control in corn. Software Version 2.0. Agric. Exp. Stn., Michigan State Univ., E. Lansing.
13. Kennedy, P. 1992. A Guide to Econometrics. 3rd ed. MIT Press, Cambridge, MA. Page 71.
14. Kidder, D., Posner, B., and Miller, D. 1989. WEEDIR: Weed control directory. Software Version 3.0. Minnesota Ext. Serv. AG-CS-2163. Univ. Minnesota, St. Paul.
15. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.
16. Knake, E. L. and Slife, F. W. 1962. Competition of Setaria faberii with corn and soybeans. Weeds 10:2629.
17. Kroppf, M. J. and Spitters, C. J. T. 1991. A simple model of crop loss by weed competition from early observations on relative area of the weeds. Weed Res. 31:97105.
18. Lybecker, D. W., Schweizer, E. E., and Westra, P. 1991. Computer aided decisions for weed management in corn. Abstracted in W. J. Agric. Econ. 16:456.
19. Murdoch, A. J. 1988. Long-term profit from weed control. Aspects Appl. Biol. 18:9198.
20. Pandey, S. 1989. Economics of wild oats control: An application of a stochastic dynamic programming model. Agricultural Economics Discussion Paper 2/89. Univ. Western Australia. Nedlands.
21. Pannell, D. J. 1990. An economic response model of herbicide application for weed control. Aust. J. Agric. Econ. 34:223241.
22. Pavlychenko, T. K. and Harrington, J. B. 1934. Competitive efficiency of weeds and cereal crops. Can. J. Res. 10:7794.
23. Pimentel, D., McLaughlin, L., Zepp, A., Lakitan, B., Kraus, T., Kleinman, P., Vancini, F., Roach, W. J., Graap, E., Keeton, W. S., and Selig, G. 1991. Environmental and economic effects of reducing pesticide use. Bioscience 41:402409.
24. Renner, K. A. and Black, J. R. 1991. SOYHERB: A computer program for soybean herbicide decision making. Agron. J. 83:921925.
25. Roush, M. L. and Radosevich, S. R. 1985. Relationships between growth and competitiveness of four annual weeds. J. App. Ecol. 22:895905.
26. Staniforth, D. W. 1957. Effects of annual grass weeds on the yield of corn. Agron. J. 49:551555.
27. Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.
28. Swinton, S. M. and King, R. P. (1994). A bioeconomic model for weed management in corn and soybean. Agric. Syst. 44 (in press).
29. Swinton, S. M. 1991. A bioeconomic model for weed management in corn and soybean. Unpublished Ph.D. Dissertation. Dep. Agric. and Appl. Econ., Univ. Minnesota, St. Paul, MN. Pages 9495.
30. Taylor, C. R. and Burt, O. R. 1984. Near-optimal management strategies for controlling wild oats in spring wheat. Am. J. Agric. Econ. 66:5060.
31. Welbank, P. J. 1963. A comparison of competitive effects of some common weed species. Ann. App. Biol. 51:107125.
32. White, K. J., Haun, S. A., Horsman, N. G., and Wong, S. D. 1988. SHAZAM Econometrics Computer Program: User's Reference Manual. McGraw-Hill, Montreal.
33. Wilkerson, G. G., Modena, S. A., and Coble, H. D. 1991. HERB: Decision model for postemergence weed control in soybean. Agron. J. 83:413417.
34. Wilson, B. J. Yield responses of winter cereals to the control of broad-leaved weeds. 1986. Pages 7582 in Proc. E.W.R.S. Symp., 1986: Economic Weed Control. European Weed Res. Soc. Stuttgart-Hohenheim.


Estimation of Crop Yield Loss Due to Interference by Multiple Weed Species

  • Scott M. Swinton (a1), Douglas D. Buhler (a2), Frank Forcella (a3), Jeffrey L. Gunsolus (a4) and Robert P. King (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed