Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T22:10:58.306Z Has data issue: false hasContentIssue false

Effects of Pyrazon on Growth, Photosynthesis, and Respiration

Published online by Cambridge University Press:  12 June 2017

R. Frank
Affiliation:
Provincial Pesticide Residue Testing Laboratory, Ontario Department of Agriculture and Food, Guelph, Ontario
C. M. Switzer
Affiliation:
Department of Botany, University of Guelph, Guelph, Ontario

Abstract

The herbicide 5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone (pyrazon) had a ten-fold greater inhibitory effect on the growth of common lambsquarters (Chenopodium album L.) than on sugar beets (Beta vulgaris L.), Production of dry matter was inhibited by accumulations of pyrazon in the tissues. When these accumulations reached a level approximately twice that which affected dry matter production, plants wilted, collapsed, and died. Pyrazon failed to affect the structural integrity of either chlorophyll or the chloroplast, but inhibited the Hill reaction of chloroplasts isolated from both sugar beets and common lambsquarters. The I50 value was 6 × 10−6 M pyrazon. There was no difference between sugar beets and common lambsquarters in the degree of inhibition in oxygen evolution by leaf discs placed in pyrazon. When plants were cultured in vivo with pyrazon, the rate of oxygen evolution was correlated with herbicide accumulations in the leaf tissues. Sugar beet leaves contained only one-third to one-fifth the level present in common lambsquarters. The rates of respiration of roots and leaf discs of both species were not affected by pyrazon treatments in vivo or in vitro.

Type
Research Article
Copyright
Copyright © 1969 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bishop, N. I. 1958. The influence of herbicide, DCMU on the oxygen evolving system of photosynthesis. Biochem. Biophys. Acta 27:205206.CrossRefGoogle ScholarPubMed
2. Drescher, N. von. 1964. Bestimmung der Rückstände von Pyramin in Pflanze und Boden, pp. 7883. In Vorträge anlässlich der Wissenschaftlichen Aussprache über chemische Unkrautbekämpfung in Zuckerrüben mit Pyramin. Badische Anilin-& Soda Fabrik AG. Ludwigshafen am Rhein. 8 und 9 Januar.Google Scholar
3. Drescher, N. von. 1965. Nachweis und Bestimmung des Herbizids Pyramin in Pflanzenmaterial und Boden, pp. 317326. 100 Jahre BASF aus der Forschung. Badische Anilin-& Soda-Fabrik AG. Ludwigshafen am Rhein. 825 p.Google Scholar
4. Fischer, A. 1962. l-phenyl-4-amino-5-chloro-pyridazon-6(PCA) als ein neues Rübenherbizid. Weed Res. 2:177184.Google Scholar
5. Hopkins, T. R., Neighbors, R. P. and Phillips, L. V. 1967. Synthesis and herbicidal activity of small-ring compounds. J. Agr. Food Chem. 15:501507.CrossRefGoogle Scholar
6. MacKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315322.Google Scholar
7. Smith, J. H. C. and Benitez, H. 1955. Chlorophyll: Analysis in plant materials, pp. 142196. In Paech, K. and Tracy, M. V. (Ed) Moderne Methoden der Pfanzen-analyse IV. Springer-Verlag, Berlin, Göttingen, Heidelberg.Google Scholar
8. Spike, J. D., Lumry, R., Eyring, H. and Wayrynen, R. E. Potential changes in suspensions of chloroplasts on illumination. Arch. Biochem. 28:4867.Google Scholar
9. Umbreit, W. W., Burris, R. H. and Stauffer, J. F. 1964. Manometric Techniques and Tissue Metabolism. 4th Ed. Burgess Publishing Co., Minneapolis, Minnesota, U. S. A. 305 p.Google Scholar
10. van der Zweep, W. 1964. The reaction of sugar beets and other test-plants upon herbicides, pp. 7075. In Vorträge anlässlich der Wissenschaftlichen Aussprache über chemische Unkrautbekämpfung in Zuckerrüben mit Pyramin. Badische Anilin-& Soda-Fabrik AG. Ludwigshafen am Rhein. 8 und 9 Januar.Google Scholar