Skip to main content Accessibility help

Effects of drawdowns and dessication on tubers of hydrilla, an exotic aquatic weed

  • Robert D. Doyle and R. Michael Smart (a1)


Subterranean turions (tubers) of hydrilla lose viability when desiccated. Experimental data showed that freshly collected tubers had a moisture content between 50 and 60% and more than 90% viability. When desiccated, there was an approximate 2% increase in tuber mortality with each percent decline in moisture content. However under field conditions, the tuber bank within the exposed sediments of a northern Texas reservoir showed no decline in number or tuber viability throughout a 12-mo continuous drawdown. Apparently, the buried tubers were never subject to sufficient dessication to damage them. Finally, an experimental pond with an extensive hydrilla tuber bank was manipulated through six flood/drawdown cycles to determine the effects of short-term drawdowns on tuber survival and quiescence. Initially, the pond had a tuber bank of about 676 and 305 tubers m−2 in the shallow and deep zones, respectively. Although the tuber number was reduced to fewer than 15 to 30 tubers m−2 by these repetitive drawdowns, hydrilla tubers were not eradicated from the pond.


Corresponding author

Corresponding author. University of North Texas, Institute of Applied Sciences, P.O. Box 310559, Denton, TX 76203-0559;


Hide All
Balciunas, J. K. and Purcell, M. F. 1991. Distribution and biology of a new Bagous weevil (Coleoptera, Curculionidae) which feeds on the aquatic weed Hydrilla verticillata . J. Aust. Entomol. Soc. 30:333338.
Barko, J. W. and Smart, R. M. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67:13281340.
Benhart, E. A. and Duniway, J. M. 1986. Decay of pondweed and hydrilla hibernacula by fungi. J. Aquat. Plant Manag. 24:2023.
Bowes, G. E., Van, T. K., Garrard, L. A., and Haller, W. T. 1977. Adaptation to low light levels by hydrilla. J. Aquat. Plant Manag. 15:3235.
Godfrey, K. E. and Anderson, L.W.J. 1994. Feeding of Bagous affinis (Coleoptera: Circulionidae) inhibits germination of hydrilla tubers. Fla. Entomol. 77:480488.
Haller, W. T., Fox, A. M., and Hanlon, C. A. 1992. Inhibition of hydrilla tuber formation by bensulfuron methyl. J. Aquat. Plant Manag. 30:4849.
Haller, W. T., Miller, J. L., and Garrard, L. A. 1976. Seasonal production and germination of Hydrilla vegetive propagules. J. Aquat. Plant Manag. 14:2629.
Haller, W. T. and Sutton, D. L. 1975. Community structure and competition between hydrilla and vallisneria. Hyacinth Control J. 13:4850.
Harlan, S. M., Davis, G. J., and Pesacreta, G. J. 1985. Hydrilla in three North Carolina lakes. J. Aquat. Plant Manag. 23:6871.
Langeland, K. A. 1993. Hydrilla response to mariner applied to lakes. J. Aquat. Plant Manag. 31:175178.
Langeland, K. A. 1996. Hydrilla verticillata (L.f.) Royle (Hydrocharataceae), “The perfect aquatic weed.” Castanea 61:293304.
Langeland, K. A. and LaRoche, F. B. 1992. Hydrilla growth and tuber production in response to bensulfuron methyl concentration and exposure time. J. Aquat. Plant Manag. 30:5358.
Miller, J. 1975. Tuberization and Tuber Dormancy in Hydrilla verticillata (L.f.) Royle. Ph.D. dissertation. University of Florida, Gainesville, FL. 97 p.
Miller, J., Haller, W. T., and Garrard, L. A. 1976. Some characteristics of hydrilla tubers taken from Lake Ocklawaha during drawdown. J. Aquat. Plant Manag. 14:2931.
Miller, J. D., Haller, W. T., and Glenn, M. S. 1993. Turion production by dioecious hydrilla in north Florida. J. Aquat. Plant Manag. 31:101105.
Netherland, M. D. 1999. Management Impacts on the Quiescence and Sprouting of Subterranean Turions of Dioecious Hydrilla [Hydrilla verticillata (L.f.) Royle]. Ph.D. dissertation. University of Florida, Gainesville, FL. 191 p.
Pieterse, A. H. 1981. Hydrilla verticillata—a review. Abstr. Trop. Agric. 7:934.
Smart, R. M., Madsen, J. D., Snow, J. R., and Dick, G. O. 1995. Physical and Environmental Characteristics of Experimental Ponds at the Lewisville Aquatic Ecosystem Research Facility. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Miscellaneous Paper A-95-2.
Steward, K. K. 1997. Influence of photoperiod on tuber production in various races of hydrilla (Hydrilla verticillata). Hydrobiologia 354:5762.
Sutton, D. L. 1996. Depletion of turions and tubers of Hydrilla verticillata in the North New River Canal, Florida. Aquat. Bot. 53:121130.
Sutton, D. L. and Portier, K. M. 1985. Density of tubers and turions of hydrilla in South Florida. J. Aquat. Plant Manag. 23:6467.
Thakore, J. N., Haller, W. T., and Shilling, D. G. 1997. Short-day exposure period for subterranean turion formation in dioecious hydrilla. J. Aquat. Plant Manag. 35:6063.
Van, T. K., Haller, W. T., and Bowes, G. 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiol. 58:761768.
Van, T. K., Haller, W. T., and Garrard, L. A. 1978. The effect of day length and temperature on hydrilla growth and tuber production. J. Aquat. Plant Manag. 16:5759.
Van, T. K. and Steward, K. K. 1990. Longevity of monoecious hydrilla propagules. J. Aquat. Plant Manag. 28:7476.


Effects of drawdowns and dessication on tubers of hydrilla, an exotic aquatic weed

  • Robert D. Doyle and R. Michael Smart (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed