Skip to main content Accessibility help
×
Home

Effect of glyphosate spray droplets on leaf cytology in velvetleaf (Abutilon theophrasti)

  • Jan S. Ryerse, Roger A. Downer (a1), R. Douglas Sammons (a2) and Paul C. C. Feng (a2)

Abstract

Leaf cytoarchitecture was evaluated by light microscopy and scanning electron microscopy, and cell viability was monitored by fluorescence after treatment of velvetleaf with defined concentrations and droplet sizes of formulated glyphosate and blended tallowamine surfactant. In response to droplets of formulated glyphosate larger than in field sprays but useful for studying structural change, we observe that the leaf epidermis thins and flattens within 1.5 h, the epidermal, mesophyll, and vascular cells at the contact site exhibit localized cytolysis by 6 h, and cytolysis and pycnosis remain restricted to the contact site at 24 h. Using endogeneous fluorescence as a marker for nonviable cells, it was determined that cellular changes are directly correlated with droplet size and that the changes are minimal after exposure to spray sizes and concentrations of formulated glyphosate and blended tallowamine typically used in the field. The results show that, at field use concentrations, the effect of formulated glyphosate and blended tallowamine on leaf cytoarchitecture is modest and localized but sufficient to allow herbicide entry.

Copyright

Corresponding author

Corresponding author. Department of Pathology, St. Louis University Health Sciences Center, 1402 South Grand Avenue, St. Louis, MO 63140; ryersejs@slu.edu

References

Hide All
Casely, J. C. and Coupland, D. 1985. Environmental and plant factors affecting glyphosate uptake, movement and activity. Pages 92123 in Grossbard, E. and Atkinson, D. eds. The Herbicide Glyphosate. London: Butterworth.
Denis, M. H. and Delrot, S. 1997. Effects of salt and surfactants on foliar uptake and long distance transport of glyphosate. Plant Physiol. Biochem 35:291301.
De Ruiter, H., Uffing, A. J. M., and Meinen, E. 1996. Influence of surfactants and ammonium sulfate on glyphosate phytotoxicity to quackgrass (Elytigia repens). Weed Technol 10:803808.
De Ruiter, H., Uffing, A. J. M., Meinen, E., and Prins, A. 1990. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci 38:567572.
Etheridge, R. E., Womac, A. R., and Mueller, T. C. 1999. Characterization of the spray droplet spectra and patterns of four venturi-type drift reducing nozzles. Weed Technol 13:765770.
Feng, P. C. C., Chiu, T., Sammons, R. D., and Ryerse, J. S. 2003. Droplet size affects glyphosate retention, absorption and translocation in corn. Weed Sci. 51:443448.
Feng, P. C. C., Ryerse, J. S., and Sammons, R. D. 1998. Correlation of leaf damage with uptake and translocation of glyphosate in velevetleaf (Abutilon theophrasti). Weed Technol 12:300307.
Gaskin, R. E. and Holloway, P. J. 1992. Some physicochemical factors influencing foliar uptake enhancement of glyphosate mono(isopro-pylammonium) by polyoxyethelene surfactants. Pestic. Sci 34:195206.
Kirkwood, R. C. and McKay, I. 1994. Accumulation and elimination of herbicides in selected crop and weed species. Pest. Sci 42:241249.
Liu, S. H., Campbell, R. A., Studens, J. A., and Wagner, R. G. 1996. Absorption and translocation of glyphosate in Aspen (Populus tremuloides Michx.) as influenced by droplet size, droplet number, and herbicide concentration. Weed Sci 44:482488.
Nobel, P. S. 1991. Physicochemical and Environmental Plant Physiology. San Diego, CA: Academic. Pp. 473520.
Reichard, D. L. 1990. A system for producing various sizes, numbers and frequencies of uniform-size droplets. Trans. ASAE 33:17671770.
Riechers, D. E., Wax, L. M., Liebl, R. A., and Bush, D. R. 1994. Surfactant-increased glyphosate uptake into plasma membrane vesicles isolated from common lambsquarters leaves. Plant Physiol 105:14191425.
Ryerse, J. S., Feng, P. C. C., and Sammons, R. D. 2001. Endogenous fluorescence identifies dead cells in plants. Microsc. Today 1:2224.

Keywords

Effect of glyphosate spray droplets on leaf cytology in velvetleaf (Abutilon theophrasti)

  • Jan S. Ryerse, Roger A. Downer (a1), R. Douglas Sammons (a2) and Paul C. C. Feng (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.