Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T09:25:57.868Z Has data issue: false hasContentIssue false

Ecological Differentiation among Genotypes of Dandelions (Taraxacum officinale)

Published online by Cambridge University Press:  20 January 2017

Mark Vellend*
Affiliation:
Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
Emily B. M. Drummond
Affiliation:
Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
Jennifer L. Muir
Affiliation:
Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
*
Corresponding author's E-mail: mvellend@interchange.ubc.ca

Abstract

We tested for ecological differences among apomictic dandelion genotypes in Vancouver, British Columbia, Canada, in order to establish a basis for predicting potential ecological consequences of genetic variation in invading populations. A greenhouse experiment on 30 potential clonal families revealed significant among-family variation for leaf morphological traits, and molecular analyses confirmed the presence of multiple genotypes. In a field common-garden experiment on six confirmed genotypes, plant size and seed production both varied over an order of magnitude among genotypes, suggesting great potential for selection among genotypes during invasion. Genotypes also varied significantly in the timing of reproduction, which may indicate differences in the timing of resource use that could promote population performance of genotype mixtures. There was no evidence of a trade-off between adult plant fitness and seed dispersal or regeneration traits. Genetic variation in dandelion populations appears to have great potential for influencing their invasive success.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Dlugosch, K. M. and Parker, I. M. 2007. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431449.CrossRefGoogle ScholarPubMed
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:1315.Google Scholar
Falque, M., Keurentjes, J., Bakx-Schotman, J. M. T., and van Dijk, P. J. 1998. Development and characterization of microsatellite markers in the sexual–apomictic complex Taraxacum officinale (dandelion). Theor. Appl. Genet. 97:283292.Google Scholar
Ford, H. 1981. Competitive relationships amongst apomictic dandelions. Biol. J. Linn. Soc. 15:355368.CrossRefGoogle Scholar
Fridley, J. D., Grime, J. P., and Bilton, M. 2007. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 95:908915.CrossRefGoogle Scholar
Geber, M. A. and Griffen, L. R. 2003. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164:S21S42.CrossRefGoogle Scholar
Guthrie, T. F. and Bomke, A. A. 1980. Nitrification inhibition by N-serve and ATC in soils of varying texture. Soil Sci. Soc. Am. J. 44:314320.CrossRefGoogle Scholar
Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N., and Vellend, M. 2008. Ecological consequences of genetic diversity. Ecol. Lett. 11:609623.CrossRefGoogle ScholarPubMed
Johnson, M. T. J., Lajeunesse, M. J., and Agrawal, A. A. 2006. Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecol. Lett. 9:2434.CrossRefGoogle ScholarPubMed
King, L. M. 1993. Origins of genotypic variation in North American dandelions inferred from ribosomal DNA and chloroplast DNA restriction enzyme analysis. Evolution. 47:136151.CrossRefGoogle ScholarPubMed
Lavergne, S. and Molofsky, J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. USA. 104:38833888.Google Scholar
Loreau, M. and Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature. 412:7276.CrossRefGoogle ScholarPubMed
Lyman, J. C. and Ellstrand, N. C. 1984. Clonal diversity in Taraxacum officinale (Compositae), an apomict. Heredity. 53:110.CrossRefGoogle Scholar
Mezynski, P. R. and Cole, D. F. 1974. Germination of dandelion seed on a thermogradient plate. Weed Sci. 22:506507.Google Scholar
Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1995. DNA-based marker systems to determine genetic diversity of weedy species and their application to biocontrol. Weed. Sci. 43:504513.CrossRefGoogle Scholar
Novak, S. J. and Mack, R. N. 2005. Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. Pages 201228. In Sax, D. F., Stachowicz, J. J., and Gaines, S. D. Species Invasions: Insights into Ecology, Evolution, and Biogeography. Sunderland, MA Sinauer.Google Scholar
Sheldon, J. C. and Burrows, F. M. 1973. The dispersal effectiveness of the achene–pappus units of selected Compositae in steady winds with convection. New Phytol. 72:665675.Google Scholar
Smithson, J. B. and Lenne, J. M. 1996. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128:127158.CrossRefGoogle Scholar
Solbrig, O. T. and Simpson, B. B. 1974. Components of regulation of a population of dandelions in Michigan. J. Ecol. 62:473486.Google Scholar
Stewart-Wade, S. M., Neumann, S., Collins, L. L., and Boland, G. J. 2002. The biology of Canadian weeds. 117. Taraxacum officinale G. H. Weber ex Wiggers. Can. J. Plant Sci. 82:825853.Google Scholar
Taylor, R. J. 1987. Population variation and biosystematic interpretations of weedy dandelions. Bull. Torr. Bot. Club. 114:109120.Google Scholar
Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology. 75:216.CrossRefGoogle Scholar
Vašut, R. J., van Dijk, P. J., Falque, M., Trávníček, B., and De Jong, J. H. 2004. Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Mol. Ecol. Notes. 4:645648.Google Scholar
Vavrek, M. C. 1998. Within-population genetic diversity of Taraxacum officinale (Asteraceae): differential genotype response and effect on interspecific competition. Am. J. Bot. 85:947955.Google Scholar
Vavrek, M. C., McGraw, J. B., and Yang, H. S. 1996. Within-population variation in demography of Taraxacum officinale: maintenance of genetic diversity. Ecology. 77:20982107.Google Scholar
Vavrek, M. C., McGraw, J. B., and Yang, H. S. 1997. Within-population variation in demography of Taraxacum officinale: season- and size-dependent survival, growth and reproduction. J. Ecol. 85:277287.CrossRefGoogle Scholar
Vellend, M. 2006. The consequences of genetic diversity in competitive communities. Ecology. 87:304311.CrossRefGoogle ScholarPubMed
Vellend, M., Harmon, L. J., Lockwood, J. L., Mayfield, M. M., Hughes, A. R., Wares, J. P., and Sax, D. F. 2007. Effects of exotic species on evolutionary diversification. Trends Ecol. Evol. 22:481488.CrossRefGoogle ScholarPubMed