Skip to main content Accessibility help
×
Home

Differential response of weed species to added nitrogen

  • Robert E. Blackshaw, Randall N. Brandt (a1), H. Henry Janzen (a1), Toby Entz (a1), Cynthia A. Grant (a2) and Douglas A. Derksen (a2)...

Abstract

Information on responses of weeds to various soil fertility levels is required to develop fertilizer management strategies as components of integrated weed management programs. A controlled environment study was conducted to determine shoot and root growth response of 23 agricultural weeds to N fertilizer applied at 0, 40, 80, 120, 180, or 240 mg kg−1 soil. Wheat and canola were included as control species. Shoot and root growth of all weeds increased with added N, but the magnitude of the response varied greatly among weed species. Many weeds exhibited similar or greater responses in shoot and root biomass to increasing amounts of soil N, compared with wheat or canola. With increasing amounts of N, 15 weed species showed a greater increase in shoot biomass, and 8 species showed a greater increase in root biomass, compared with wheat. Ten weed species exhibited increases in shoot biomass similar to that exhibited by canola, and five weed species showed greater increases in root biomass than did canola, as N dose was increased. All crop and weed species extracted > 80% of available N at low soil N levels. At the highest N dose, 17 of 23 weed species took up similar or greater amounts of soil N than did wheat, and 6 weed species took up N in amounts similar to that taken up by canola. These findings have significant implications as to how soil fertility affects crop–weed competition. The high responsiveness of many weed species to N may be a weakness to be exploited through development of fertilizer management methods that enhance crop competitiveness with weeds.

Copyright

Corresponding author

Corresponding author. Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1; blackshaw@agr.gc.ca

References

Hide All
Ampong-Nyarko, K. and de Datta, S. K. 1993. Effects of nitrogen application on growth, nitrogen use efficiency and rice-weed interaction. Weed Res. 33:269276.
Blackshaw, R. E. and Entz, T. 1995. Day and night temperature effects on vegetative growth of Erodium cicutarium . Weed Res. 35:471476.
Blackshaw, R. E., Semach, G., Li, X., O’Donovan, J. T., and Harker, K. N. 2000. Tillage, fertiliser and glyphosate timing effects on foxtail barley (Hordeum jubatum) management in wheat. Can. J. Plant Sci. 80:655660.
Carlson, H. L. and Hill, J. E. 1985. Wild oat (Avena fatua) competition with spring wheat: effects of nitrogen fertilization. Weed Sci. 34:2933.
Dhima, K. V. and Eleftherohorinos, I. G. 2001. Influence of nitrogen on competition between winter cereals and sterile oat. Weed Sci. 49:7782.
Di Tomaso, J. M. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 43:491497.
Gates, C. E. and Bilbro, J. D. 1978. Illustration of a cluster analysis method for mean separation. Agron. J. 70:462465.
Gill, K. S., Arshad, M. A., and Moyer, J. R. 1997. Cultural control of weeds. Pages 237275 In Pimentel, D., ed. Techniques for Reducing Pesticide Use. New York: J. Wiley.
Grant, C. A. and Bailey, L. D. 1993. Fertility management in canola production. Can. J. Plant Sci. 73:651670.
Haas, H. and Streibig, J. C. 1982. Changing patterns of weed distribution as a result of herbicide use and other agronomic factors. Pages 5779 In LeBaron, H. M. and Streibig, J. C., eds. Herbicide Resistance in Plants. New York: J. Wiley.
Henson, J. F. and Jordan, L. S. 1982. Wild oat (Avena fatua) competition with wheat (Triticum aestivum and T. turgidum durum) for nitrate. Weed Sci. 30:297300.
Iqbal, J. and Wright, D. 1997. Effects of nitrogen supply on competition between wheat and three annual weed species. Weed Res. 37:391400.
Jackson, G. D. 2000. Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron. J. 92:644649.
Kirkland, K. J. and Beckie, H. J. 1998. Contribution of nitrogen fertilizer placement to weed management in spring wheat (Triticum aestivum). Weed Technol. 12:507514.
Liebman, M. and Janke, R. J. 1990. Sustainable weed management practices. Pages 111143 In Francis, C. A., Flora, C. B., and King, L. D., eds. Sustainable Agriculture in Temperate Zones. New York: J. Wiley.
Mesbah, A. O. and Miller, S. D. 1999. Fertilizer placement affects jointed goatgrass (Aegilops cylindrica) competition in winter wheat (Triticum aestivum). Weed Technol. 13:374377.
Milliken, G. A. and Johnson, D. A. 2001. Analysis of Messy Data. Volume 3, Analysis of Covariance. London: Chapman and Hill. 605 p.
Mohler, C. L. 2001. Enhancing the competitive ability of crops. Pages 269374 In Liebman, M., Mohler, C. L., and Staver, C. P., eds. Ecological Management of Agricultural Weeds. Cambridge, U.K.: Cambridge University Press.
Mohr, R. M., Janzen, H. H., Bremer, E., and Entz, M. H. 1998. The fate of symbiotically-fixed 15N2 as influenced by method of alfalfa termination. Soil Biol. Biochem. 30:13591367.
O’Donovan, J. T., Harker, K. N., Clayton, G. W., Robinson, D., Blackshaw, R. E., and Hall, L. 2001. Implementing integrated weed management in barley (Hordeum vulgare). Pages 7589 In Blackshaw, R. E. and Hall, L. M., eds. Integrated Weed Management: Explore the Potential. Sainte-Anne-de-Bellevue, Quebec: Expert Committee on Weeds.
Patterson, D. T. 1995. Effects of environmental stress on weed/crop interactions. Weed Sci. 43:483490.
Qasem, J. R. 1993. Root growth, development and nutrient uptake of tomato (Lycopersicon esculentum) and Chenopodium album . Weed Res. 33:3542.
Rasmussen, P. E. 1995. Effects of fertilizer and stubble burning on downy brome competition in winter wheat. Commun. Soil Sci. Plant Anal. 26:951960.
Raun, W. R. and Johnson, G. V. 1999. Improving nitrogen use efficiency for cereal production. Agron. J. 9:357363.
Santos, B. M., Morales-Payan, J. P., Stall, W. M., and Bewick, T. A. 1998. Influence of purple nutsedge (Cyperus rotundus) density and nitrogen rate on radish (Raphanus sativus) yield. Weed Sci. 46:661664.
[SAS] Statistical Analysis Systems. 1999. SAS User's Guide. Version 8. Cary, NC: Statistical Analysis Systems Institute. 3884 p.
Shipley, B. and Keddy, P. A. 1988. The relationship between relative growth rate and sensitivity to nutrient stress in twenty-eight species of emergent macrophytes. J. Ecol. 76:11011110.
Teyker, R. H., Hoelzer, H. D., and Liebl, R. A. 1991. Maize and pigweed response to nitrogen supply and form. Plant Soil. 135:287292.
Vengris, J., Drake, M., Colby, W. G., and Bart, J. 1953. Chemical composition of weeds and accompanying crop plants. Agron. J. 45:213218.
Zimdahl, R. L. 1980. Weed-Crop Competition. Corvallis, OR: International Plant Protection Center, Oregon State University. pp. 83126.

Keywords

Differential response of weed species to added nitrogen

  • Robert E. Blackshaw, Randall N. Brandt (a1), H. Henry Janzen (a1), Toby Entz (a1), Cynthia A. Grant (a2) and Douglas A. Derksen (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed