Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T07:44:11.963Z Has data issue: false hasContentIssue false

Cross-Resistance of Several Diclofop-Resistant Wild Oat (Avena fatua) Biotypes From the Willamette Valley of Oregon

Published online by Cambridge University Press:  12 June 2017

Steven S. Seefeldt
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., Pullman, WA 99164
David R. Gealy
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., Pullman, WA 99164
Bill D. Brewster
Affiliation:
Crop Sci. Dep., Oregon State Univ., Corvallis, OR 97331
E. Patrick Fuerst
Affiliation:
Dep. Crop and Soil Sci., Washington State Univ., Pullman, WA 99164

Abstract

The first occurrences of wild oat resistance to diclofop in the Willamette Valley of Oregon were reported in 1990. Among eight resistant biotypes, GR50 values for diclofop were 3 to 64 times greater than the GR50 for a susceptible wild oat biotype. GR50 values for other aryloxyphenoxypropionate herbicides varied from 1 to over 100 times greater than a susceptible biotype. Only one resistant biotype was resistant to cyclohexanedione herbicides, and this was only a three-fold increase in GR50. Except for one biotype that had a low level of resistance to pronamide, none of the wild oat biotypes were cross-resistant to any other commonly used wild oat herbicide. Levels of resistance and cross-resistance did not follow a consistent pattern among biotypes in this study, suggesting more than one resistance trait. There were significant differences in the light use efficiency, height, dry weight, leaf area, and extent and timing of tillering and flowering of four wild oat biotypes studied. These physiological and morphological differences suggest that these resistant biotypes were selected independently. The diversity of resistance patterns and the coevolution of resistance at several locations will add to the difficulty of resistance management

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
2. Harwood, J. L. 1988. The site of action of some selective graminaceous herbicides is identified as acetyl-CoA carboxylase. Trends in Biochem. Sci. 13:330331.Google Scholar
3. Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41:232238.Google Scholar
4. Heap, I. M. and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis (L.) Beauv.). Abstr. Weed Sci. Soc. Am. 33:62.Google Scholar
5. Joseph, O. O., Hobbs, S. L. A., and Jana, S. 1990. Diclofop resistance in wild oat (Avena fatua). Weed Sci. 38:475479.Google Scholar
6. Kirkland, K. J. and O'Sullivan, P. A. 1984. Control of wild oats in wheat with barban, diclofop-methyl, flamprop-methyl, and difenzoquat. Rev. Can. J. Plant Sci. 64:10191021.CrossRefGoogle Scholar
7. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops: an overview and prognosis. Pages 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. ACS Symp. Ser. 421.CrossRefGoogle Scholar
8. Malchow, W. E., Fay, P. K., Maxwell, B. D., and Dyer, W. E. 1993. Wild oat (Avena fatua L.) resistance to triallate in Montana. Abstr. Weed Sci. Soc. Am. 33:18.Google Scholar
9. Marshall, G., Kirkwood, R. C., and Leach, G. E. 1993. Studies on the biology and control of graminicide-resistant and susceptible biotypes of goosegrass (Eleusine indica L. Gaertn). Abstr. Weed Sci. Soc. Am. 33:62.Google Scholar
10. Monteith, J. L. 1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 208:277294.Google Scholar
11. Nalewaja, J. D. and Arnold, W. E. 1970. Weed control methods, losses and costs due to weeds, and benefits of weed control in wheat and other small grains. Pages 4864 in FAO Int. Conf. Weed Control.Google Scholar
12. Powles, S. B. and Mathews, J. A. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): A driving force for the adoption of integrated weed management. Pages 7587 in Denholm, I., Devonshire, A. L., and Hollomon, D. W., eds. Resistance '91: Achievements and Developments in Combating Pesticide Resistance. SCI London.Google Scholar
13. Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetic characterization, stereoselectivity. and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid herbicides. Arch. Biochem. Biophys. 265:219225.CrossRefGoogle Scholar
14. Seefeldt, S. S., Gealy, D. R., Fuerst, E. P., Brewster, B. D., and Appleby, A. P. 1992. Investigations of diclofop-methyl resistant wild oat (Avena fatua L.) biotypes from Oregon. Abstr. Weed Sci. Soc. Am. 32:89.Google Scholar
15. Seefeldt, S. S., Gealy, D. R., and Fuerst, E. P. 1992. Mechanisms of diclofop-methyl resistance of two wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Suppl. to Plant Physiol. 99:73.Google Scholar
16. Seefeldt, S. S., Gealy, D. R., Brewster, B. D., and Fuerst, E. P. 1992. Diclofop resistant wild oat (Avena fatua L.) in the Willamette Valley of Oregon: Distribution, Case Histories, and Cross-Resistance to Other Herbicides. Abstr. Weed Sci. Soc. Am. 33:19.Google Scholar
17. Shrama, M. P. 1979. Wild oat—a billion dollar problem. Weeds Today. 10(3):56.Google Scholar
18. Shimabukuro, M. A., Shimabukuro, R. H., Nord, W. S., and Hoerauf, R. A. 1978. Physiological effects of methyl 2-[4-(2,4-dichlorophenoxy)-phenoxy]propanoate on wild oat and wheat. Pestic. Biochem. Physiol. 8:199207.Google Scholar
19. Shimabukuro, R. H. 1990. Selectivity and mode of action of the postemergence herbicide diclofop-methyl. Quart. Plant Growth Regulator Soc. Am. 18:3754.Google Scholar
20. Sinning, I., Michel, H., Mathis, P., and Rutherford, A. W. 1989. Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance, and optical spectroscopy. Biochemistry 28:55445553.Google Scholar
21. Smeda, R. J., Barrentine, W. L., and Snippes, C. E. 1993. Johnsongrass (Sorghum halepense (L.) Pers.) resistance to postemergence grass herbicides. Abstr. Weed Sci. Soc. Am. 33:18.Google Scholar
22. Somody, C. N., Nalewaja, J. D., and Miller, S. D. 1984. Wild oat (Avena fatua L.) and Avena sterilis morphological characteristics and response to herbicides. Weed Sci. 32:353359.Google Scholar
23. Spitters, C. J. T., van Keulen, H., and van Kraalingen, D. W. G. 1989. A simple and universal crop growth simulator: SUCROS87. Pages 145181 in Fabbinge, R., Ward, S. A., and vàn Laar, H. H., eds. Simulation and Systems Management in Crop Protection. Pudoc. Wageningen.Google Scholar
24. Stoltenberg, D. E. and Wiederholt, R. J. 1993. Giant foxtail (Setaria faberi Herrm.) resistance to acetyl-CoA carboxylase inhibitors. Abstr. Weed Sci. Soc. Am. 33:61.Google Scholar
25. Streibig, J. C., Rudemo, M., and Jenson, J. E. 1993. Dose-response curves and statistical models. Pages 3055 in Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. CRC Press, Boca Raton, FL.Google Scholar
26. Thai, K. M., Jana, S., and Naylor, J. M. 1985. Variability for response to herbicides in wild oat (Avena fatua) populations. Weed Sci. 33:829835.Google Scholar
27. Thomas, H. and Jones, I. T. 1976. Origins and identification of weed species of Avena . Pages 118 in Jones, D. P., ed. Wild Oat in World Agriculture. Agric. Res. Counc., London.Google Scholar
28. Yaacoby, T., Hall, J. C., and Stephenson, G. R. 1991. Influence of fenchlorazole-ethyl on the metabolism of fenoxaprop-ethyl in wheat, barley, and crabgrass. Pestic. Biochem. Physiol. 41:296304.CrossRefGoogle Scholar