Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T16:38:04.279Z Has data issue: false hasContentIssue false

Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions

Published online by Cambridge University Press:  20 January 2017

Lawrence R. Oliver
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701

Abstract

A 2-yr field study was conducted to compare growth characteristics of 24 Palmer amaranth accessions collected from across the indigenous range of the species in the United States. Variation in growth and development of Palmer amaranth was noted among accessions based on leaf area ratio (LAR), specific leaf area (SLA), net assimilation rate (NAR), and stem leaf ratio (SLR), but only SLR varied across harvest intervals among accessions. Accessions collected across the range of Palmer amaranth in the United States displayed variation in growth and development based on differences in LAR, SLA, NAR, and SLR. Observed differences among accessions indicate the existence of Palmer amaranth ecotypes.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Burgos, N. R., Kuk, Y., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibiting herbicides. Pestic. Manag. Sci 57:449457.CrossRefGoogle Scholar
Cahoon, J., Ferguson, J., Edwards, D., and Tucker, P. 1990. A microcomputer-based irrigation scheduler for the humid mid-south region. Appl. Eng. Agric 6:289295.CrossRefGoogle Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences in combined analyses of experiments with two- or three-factor treatment designs. Agron. J 81:665672.CrossRefGoogle Scholar
Christoffoleti, P. J., Westra, P., and Moore, F. III. 1997. Growth analysis of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci 45:691695.Google Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oceologia 57:107112.CrossRefGoogle Scholar
Fernald, M. L. 1950. Gray's Manual of Botany. 8th ed. New York: American Book. 602 p.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol 6:587591.CrossRefGoogle Scholar
Gossett, B. J. and Toler, J. E. 1999. Differential control of Palmer amaranth (Amaranthus palmeri) and smooth pigweed (Amaranthus hybridus) by postemergence herbicides in soybean (Glycine max). Weed Technol 13:165168.CrossRefGoogle Scholar
[GPFA] Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. Pp. 179184.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420.CrossRefGoogle Scholar
Horak, M. J. and Loughlin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci 48:347355.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybean (Glycine max). Weed Sci 42:523527.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1996. Existence of ecotypes among populations of entireleaf morningglory (Ipomoea hederacea var. integriuscula). Weed Sci 44:540544.CrossRefGoogle Scholar
Knezevic, S. Z., Horak, M. J., and Vanderlip, R. L. 1999. Estimates of physiological determinants for Amaranthus retroflexus . Weed Sci 47:291296.CrossRefGoogle Scholar
Kwon, S. L., Smith, R. J. Jr., and Talbert, R. E. 1992. Comparative growth and development of red rice (Oryza sativa) and rice (O. sativa). Weed Sci 40:5762.CrossRefGoogle Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci 49:202208.CrossRefGoogle Scholar
Mayo, C. M., Horak, M. J., Peterson, D. E., and Boyer, J. E. 1995. Differential control of four Amaranthus species by six postemergence herbicides in soybean (Glycine max). Weed Technol 9:141147.CrossRefGoogle Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci 36:770774.CrossRefGoogle Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol 18:2329.CrossRefGoogle Scholar
Ottis, B. V., O'Barr, J. H., Mccauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coarse-textured soils. Weed Technol 18:10961100.CrossRefGoogle Scholar
Pandey, D. K., Palni, L. M. S., and Joshi, S. C. 2003. Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci 51:191201.CrossRefGoogle Scholar
Patterson, D. T. 1993. Effects of temperature and photoperiod on growth and development of sicklepod (Cassia obtusifolia). Weed Sci 41:574582.CrossRefGoogle Scholar
Patterson, D. T., McGowan, M., Mullahey, J. J., and Westbrooks, R. G. 1997. Effects of temperature and photoperiod on tropical soda apple (Solanum viarum Dunal) and its potential range in the U.S. Weed Sci 45:404408.CrossRefGoogle Scholar
Radosevich, S., Holt, J. S., and Ghersa, C. 1997. Weed Ecology: Implications for Vegetation Management. New York: Wiley. Pp. 278301.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci 47:305309.CrossRefGoogle Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersick, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333.CrossRefGoogle Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126.CrossRefGoogle Scholar
Stephenson, D. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi delta corn production. Weed Technol 18:11111116.CrossRefGoogle Scholar
Steyermark, J. A. 1963. Flora of Missouri. Ames, IA: Iowa State University Press. 622 p.CrossRefGoogle Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol 12:315321.CrossRefGoogle Scholar
VanGessel, M. J., Schroeder, J., and Westra, P. 1998. Comparative growth and development of four spurred anoda (Anoda cristata) accessions. Weed Sci 46:9198.CrossRefGoogle Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States from 1974 to 1995. Weed Technol 11:308317.CrossRefGoogle Scholar
Zhang, W., Webster, E. P., and Leon, C. T. 2005. Response of rice cultivars to V-10029. Weed Technol 19:307311.CrossRefGoogle Scholar