Skip to main content Accessibility help
×
Home

Characterization of Fenoxaprop-P-Ethyl–Resistant Junglerice (Echinochloa colona) from Mississippi

  • Alice A. Wright (a1), Vijay K. Nandula (a2), Logan Grier (a3), Kurt C. Showmaker (a4), Jason A. Bond (a1), Daniel G. Peterson (a1), Jeffery D. Ray (a5) and David R. Shaw (a1)...

Abstract

A population of junglerice from Sunflower County, MS, exhibited resistance to fenoxaprop-P-ethyl. An 11-fold difference in ED50 (the effective dose needed to reduce growth by 50%) values was observed when comparing the resistant population (249 g ae ha–1) with susceptible plants (20 g ae ha–1) collected from a different field. The resistant population was controlled by clethodim and sethoxydim at the field rate. Sequencing of the acetyl coenzyme A carboxylase, which encodes the enzyme targeted by fenoxaprop-P-ethyl, did not reveal the presence of any known resistance-conferring point mutations. An enzyme assay confirmed that the acetyl coenzyme A carboxylase in the resistant population is herbicide sensitive. Further investigations with two cytochrome P450 inhibitors, malathion and piperonyl butoxide, and a glutathione-S-transferase inhibitor, 4-chloro-7-nitrobenzofurazan, did not indicate involvement of any metabolic enzymes inhibited by these compounds. The absence of a known target-site point mutation and the sensitivity of the ACCase enzyme to herbicide show that fenoxaprop-P-ethyl resistance in this population is due to a non–target-site mechanism or mechanisms.

Copyright

Corresponding author

Corresponding author's E-mail: aaw240@msstate.edu

Footnotes

Hide All

Associate editor for this paper: Marie A. Jasieniuk, University of California, Davis.

Footnotes

References

Hide All
Altop, EK, Mennan, H, Streibig, JC, Budak, U, Ritz, C (2014) Detecting ALS and ACCase herbicide tolerant accession of Echinochloa oryzoides (Ard.) Fritsch. in rice (Oryza sativa L.) fields. Crop Prot 65:202206
Bakkali, Y, Ruiz-Santaella, JP, Osuna, MD, Wagner, J, Fischer, AJ, De Prado, R (2007) Late watergrass (Echinochloa phyllopogon) : mechanisms involved in the resistance to fenoxaprop-p-ethyl J Agric Food Chem 55:40524058
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 72:248254
Burton, JD, Gronwald, JW, Somers, DA, Connelly, JA, Gengenbach, BG, Wyse, DL (1987) Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop Biochem Biophys Res Commun 148:10391044
Cha, TS, Najihah, MG, Sahid, IB, Chuah, TS (2014) Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia Pestic Biochem Physiol 111:713
Christoffers, MJ, Berg, ML, Messersmith, CG (2002) An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat Genome 45:10491056
Cummins, I, Wortley, DJ, Sabbadin, F, He, Z, Coxon, CR, Straker, HE, Sellars, JD, Knight, K, Edwards, L, Hughes, D, Kaundun, SS, Hutchings, SJ, Steel, PG, Edwards, R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds Proc Natl Acad Sci USA 110:58125817
Délye, C, Zhang, XQ, Chalopin, C, Michel, S, Powles, SB (2003) An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxphenoxypropionate but not to cyclohexanedione inhibitors Plant Physiol 132:17161723
Egli, MA, Gengenbach, BG, Gronwald, JW, Somers, DA, Wyse, DL (1993) Characterization of maize acetyl-coenzyme A carboxylase Plant Physiol 101:499506
Fischer, AJ, Ateh, CM, Bayer, DE, Hill, JE (2000) Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225230
Hall, LM, Moss, SR, Powles, SB (1997) Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): herbicide metabolism as a cross-resistance mechanism Pestic Biochem Physiol 57:8798
Heap, I. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed July 11, 2015.
Hidayat, I, Preston, C (2001) Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis Pestic Biochem Physiol 71:190195
Kaundun, SS (2010) An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non–target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population Pest Manag Sci 66:12491256
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Mentjies, P, Drummond, A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data Bioinformatics 28:16471649
Konishi, T, Sasaki, Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance towards herbicides Proc Natl Acad Sci USA 91:35983601
Konishi, T, Shinohara, K, Yamada, K, Sasaki, Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme Plant Cell Physiol 37:117122
Leach, GE, Devine, MD, Kirkwood, RC, Marshall, G (1995) Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica Pestic Biochem Physiol 51:129136
Li, L, Bi, Y, Liu, W, Yuan, G, Wang, J (2013) Molecular basis for resistance to fenoxaprop-p-ethyl in American sloughgrass (Bechmannia syzigachne Steud.) Pestic Biochem Physiol 105:118121
Pan, L, Li, J, Xia, W, Zhang, D, Dong, L (2015) An effective method, composed of LAMP and dCAPS to detect different mutations in fenoxaprop-P-ethyl-resistant American sloughgrass (Bechmannia syzigachne Steud.) populations Pestic Biochem Physiol 117:18
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides Annu Rev Plant Biol 61:317347
Rendina, AR, Felts, JM, Beaudoin, JD, Craig-Kennard, AC, Look, LL, Paraskos, SL, Hagenah, JA (1988) Kinetic characterization, steroselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxphenoxypropionic acid grass herbicides Arch Biochem Biophys 265:219225
Riar, DS, Norsworthy, JK, Srivastava, V, Nandula, V, Bond, JA, Scott, RC (2012) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61:278289.
Scarabel, L, Panozzo, S, Varotto, S, Sattin, M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicide in pinoxaden-resistant Lolium spp Pest Manag Sci 67:932941
Tal, A, Rubin, B (2004) Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum Pest Manag Sci 60:10131018
Van Eerd, LL, Hoagland, RE, Zablotowicz, RM, Hall, JC (2003) Pesticide metabolism in plants and microorganisms Weed Sci 51:472495.
Yun, M-S, Yogo, Y, Miura, R, Yamasue, Y, Fischer, AJ (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem Physiol 83:107114.
Zhang, XQ, Powles, SB (2006) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population New Phytol 172:636645

Keywords

Characterization of Fenoxaprop-P-Ethyl–Resistant Junglerice (Echinochloa colona) from Mississippi

  • Alice A. Wright (a1), Vijay K. Nandula (a2), Logan Grier (a3), Kurt C. Showmaker (a4), Jason A. Bond (a1), Daniel G. Peterson (a1), Jeffery D. Ray (a5) and David R. Shaw (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed