Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T19:30:56.147Z Has data issue: false hasContentIssue false

Behavior of 14C-Haloxyfop in Common Bermudagrass (Cynodon dactylon) Stolons

Published online by Cambridge University Press:  12 June 2017

Horacio L. Maroder
Affiliation:
Plant Physiol., Unidad Fisiologia Vegetal, Departamento de Botanica, CIRN, INTA, Castelar, Buenos Aires, Argentina
Imelda A. Prego
Affiliation:
Plant Physiol., Unidad Fisiologia Vegetal, Departamento de Botanica, CIRN, INTA, Castelar, Buenos Aires, Argentina
Maria A. Cairoli
Affiliation:
Plant Physiol., Unidad Fisiologia Vegetal, Departamento de Botanica, CIRN, INTA, Castelar, Buenos Aires, Argentina

Abstract

The behavior of the methyl ester of 14C-haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid} in common bermudagrass [Cynodon dactylon (L.) Pers. # CYNDA] stolons was examined in greenhouse experiments at two different seasons. The 14C from the herbicide applied on the leaves of a stolon node translocated no more than 3% of the applied radioactivity to the apex and base. Movement out of stolons was not significant. In early summer less than 1% translocated in each direction; in early fall more than 2% moved to the apex and less than 1% toward the base. Decrease of 14C recovery with time was evident in both seasons, particularly in early summer. Haloxyfop volatilization from the leaf surface apparently plays a significant role in recovery decrease. The 14C found in stolons in early summer was approximately the same as that of early fall, although herbicide remaining available for uptake on the leaf surface was lower in the former season. We suggest that environmental conditions that favor volatilization could enhance uptake.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bianchi, A. y B. Masiero. 1983. Evaluacion de herbicidas para el control de gram on en soja. ASAM 11:6370.Google Scholar
2. Boldt, P. F. and Putnam, A. R. 1980. Selectivity mechanism for foliar application of dichlofop-methyl. I. Retention, absorption, translocation and volatility. Weed Sci. 28:474477.CrossRefGoogle Scholar
3. Buhler, D. D. and Burnside, O. C. 1984. Herbicidal activity of fluazifop-butyl, haloxyfop-methyl, and sethoxydim in soil. Weed Sci. 32:824831.CrossRefGoogle Scholar
4. Buhler, D. D., Swisher, B. A., and Burnside, O. C. 1985. Behavior of 14C-haloxyfop-methyl in intact plants and cell cultures. Weed Sci. 33:291299.CrossRefGoogle Scholar
5. Forde, B. J. 1966. Translocation in grasses. I. Bermudagrass. N.Z. J. Bot. 4:479495.CrossRefGoogle Scholar
6. Gillespie, G. R. and Miller, S. D. 1983. Absorption, translocation, and metabolism of dichlofop by sunflower (Helianthus annum). Weed Sci. 31:658663.CrossRefGoogle Scholar
7. Harrison, S. K. and Wax, L. M. 1968. Adjuvant effects on absorption, translocation, and metabolism of haloxyfop-methyl in corn (Zea mays). Weed Sci. 34:185195.CrossRefGoogle Scholar
8. Hendley, P., Dicks, J. W., Thomas, J. M., Slyfield, S. M., Tummon, O. J., and Barrett, J. C. 1985. Translocation and metabolism of pyridiniloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 23:1124.CrossRefGoogle Scholar
9. Hicks, C. and Jordan, T. N. 1984. Response of Bermudagrass (Cynodon dactylon), quackgrass (Agropyron repens), and wirestem muhly (Muhlembergia frondosa) to postemergence grass herbicide. Weed Sci. 32:835841.CrossRefGoogle Scholar
10. Jordan, T. N. 1977. Effects of temperature and relative humidity on the toxicity of glyphosate to Bermudagrass (Cynodon dactylon). Weed Sci. 25:448451.CrossRefGoogle Scholar
11. Kells, J. J., Meggitt, W., and Penner, D. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143149.CrossRefGoogle Scholar
12. Maroder, H. L. 1973. Physiological effects of dalapon in Cynodon dactylon (L.) Pers. Weed Res. 13:1923.CrossRefGoogle Scholar
13. McWhorter, C. G. 1981. The effect of temperature and relative humidity on translocation of 14C-metriflufen in johnsongrass (Sorghum halepense) and soybean (Glycine max). Weed Sci. 29:8792.CrossRefGoogle Scholar
14. Mitidieri, A., Olivieri, R., Allien, T., Francini, L., Barat, D., and Vignau, J. 1982. Evaluacion de herbicidas de postemergencia, epoca de aplicacion y coadyuvantes en el control de sorgo de Alepo (Sorghum halepense) en soja. IX Reunion Argentina sobre Maleza y su control. Santa Fe. Pages 373.Google Scholar
15. Olson, W. and Nalewaja, J. D. 1982. Effect of MCPA on 14C-dichlofop uptake and translocation. Weed Sci. 30:5963.CrossRefGoogle Scholar
16. Todd, B. G. and Stobbe, E. H. 1980. The basis of the antagonist effect of 2,4-D on dichlofop-methyl toxicity to wild oat (Avena fatua). Weed Sci. 28:371377.CrossRefGoogle Scholar