Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T15:13:16.826Z Has data issue: false hasContentIssue false

Basis for Selectivity of Phenmedipham and Desmedipham on Wild Mustard, Redroot Pigweed, and Sugar Beet

Published online by Cambridge University Press:  12 June 2017

Larry W. Hendrick
Affiliation:
Dep. of Crop and Soil Sci., Michigan State Univ., E. Lansing, MI 48824
William F. Meggitt
Affiliation:
Dep. of Crop and Soil Sci., Michigan State Univ., E. Lansing, MI 48824
Donald Penner
Affiliation:
Dep. of Crop and Soil Sci., Michigan State Univ., E. Lansing, MI 48824

Abstract

The basis for selectivity of phenmedipham (methyl-m-hydroxycarbanilate m-methylcarbanilate) and desmedipham (ethyl m-hydroxycarbanilate carbanilate) on wild mustard [Brassica kaber (DC.) L.C. Wheeler ‘pinnatifida’ (Stokes) L.C. Wheeler], redroot pigweed (Amaranthus retroflexus L.), and sugar beet (Beta vulgaris L.) was studied by evaluating spray retention, absorption, translocation, and metabolism. Total photosynthesis in wild mustard was severely inhibited in less than 5 hr after foliar application of either herbicide and did not recover. Total photosynthesis in sugar beet was slightly inhibited but recovered after 24 hr. Photosynthesis in redroot pigweed recovered from a treatment of phenmedipham but did not recover when treated with desmedipham. Differences in spray retention or foliar absorption did not explain selectivity. Within 5 hr after herbicide application, redroot pigweed had translocated more desmedipham than phenmedipham from the site of absorption and had metabolized a large amount of the phenmedipham but little desmedipham. The key factor explaining selectivity appeared to be at the initial detoxication reaction of the parent compound.

Type
Research Article
Copyright
Copyright © 1974 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Arndt, F. and Kotter, C. 1968. Zur selektivitat von phenmedipham als nachauflaufherbized in Betaruben. Weed Res. 8:249271.CrossRefGoogle Scholar
2. Bischof, F. Von., Koch, W., Majumdar, J.C., and Schwerdtle, F. 1970. Retention, penetration, and loss of phenmedipham related to varying factors. Z. Pflanzenkr. Pflanzenpathol. Pflanzenschutz 5:95102.Google Scholar
3. Buchel, K.H. 1972. Mechanisms of action and structure activity relations of herbicides that inhibit photosynthesis. Pestic. Sci. 3:89110.CrossRefGoogle Scholar
4. Edwards, C.J. 1969. Experiments in the field performance of phenmedipham. Proc. Brit. Weed Contr. Conf. 9:575579.Google Scholar
5. Good, N.E. 1962. Inhibitors of photosynthesis as herbicides. World Rev. Pest Contr. 1:1928.Google Scholar
6. Holmes, H.M. 1969. Phenmedipham activity and selectivity under U.K. conditions. Proc. Brit. Weed Contr. Conf. 9:580585.Google Scholar
7. Kassebeer, H. 1971. Aufnahmegeschwindigkeit, metabolismus and verlagerung von phenmedipham bei verschieden empfindlichen pflanzen. Z Pflanzenkr. Pflanzenschutz 18:158174.Google Scholar
8. Knowles, C.O. and Sonawane, B. 1972. Ethyl m-hydroxycarbanilate carbanilate (EP-475) metabolism in sugar beets. Bull. Environ. Contam. Toxicol. 8:7376.CrossRefGoogle ScholarPubMed
9. Kotter, C. and Arndt, F. 1968. Der einfluss von phenmedipham auf die CO2-aufnahme und die dunkelatmung von zuckerruben und senf in abhangigkeit von pflanzenalter. J. Int. Inst. Sugar Beet Res. 3:126133.Google Scholar
10. Lui, T.-Y. Oppenheim, A., and Castlefranco, P. 1965. Ethyl alcohol metabolism in leguminous seedlings. Plant Physiol. 40:12611268.Google Scholar
11. Norris, R.F. 1973. Crystallization of phenmedipham from aqueous emulsions. Weed Sci. 21:610.CrossRefGoogle Scholar
12. Schweizer, E.E. and Weatherspoon, D.M. 1971. Response of sugar beets and weeds to phenmedipham and two analogs. Weed Sci. 19:635639.CrossRefGoogle Scholar
13. Van Overbeek, J. 1962. Physiological responses of plants to herbicides. Weeds 10:170174.CrossRefGoogle Scholar
14. Wang, C.H. and Willis, D.L. 1965. Radiotracer methodology in biological science. Prentice-Hall, Inc, New Jersey, 363 pp.Google Scholar