Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T04:45:30.067Z Has data issue: false hasContentIssue false

Antagonistic Effect of MCPA on Fenoxaprop Activity

Published online by Cambridge University Press:  12 June 2017

Raymond J. A. Deschamps
Affiliation:
Biol. Dep., Univ. Regina, Regina, SK, S4S 0A2, Canada
Andrew I. Hsiao
Affiliation:
Agric. Can. Res. Stn., Box 440, Regina, SK, S4P 3A2, Canada
William A. Quick
Affiliation:
Biol. Dep., Univ. Regina, Regina, SK, S4S 0A2, Canada

Abstract

Greenhouse and field studies were conducted to determine the effect of the isooctyl ester of MCPA on the activity of the ethyl ester of fenoxaprop in four grass species. In the greenhouse, wheat tolerated fenoxaprop better than barley, oat, and wild oat. Among wild oat populations, SH 430 was the most tolerant to fenoxaprop followed by MON 73, CS 40, the natural population, and AN 51. MCPA reduced fenoxaprop activity in wheat and barley, protecting the crops from herbicide injury. However, MCPA did not reduce the activity of fenoxaprop in most wild oat lines. In field studies, wheat and barley treated with fenoxaprop at 150 g/ha plus MCPA at 300 g/ha were not appreciably different from weed-free controls while fenoxaprop applied alone at 150 g/ha damaged the crops. Fenoxaprop applied at 150 g/ha in combination with 300 g/ha MCPA resulted in at least 78% wild oat control.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Adkins, S. W., Loewen, M., and Symons, S. J. 1986. Variation within pure lines of wild oats (Avena fatua) in relation to degree of primary dormancy. Weed Sci. 34:859864.Google Scholar
2. Adkins, S. W., Loewen, M., and Symons, S. J. 1987. Variation within pure lines of wild oats (Avena fatua) in relation to temperature of development. Weed Sci. 35:169172.CrossRefGoogle Scholar
3. Akey, W. C. and Morrison, I. N. 1983. Effect of moisture stress on wild oat (Avena fatua) response to diclofop. Weed Sci. 31:247253.CrossRefGoogle Scholar
4. Bieringer, H., Horlein, G., Langeluddeke, P., and Handte, R. 1982. HOE 33171-A new selective herbicide for the control of annual and perennial warm climate grass weeds in broadleaf crops. Proc. 1982 Br. Crop Prot. Conf.–Weeds 1:1117.Google Scholar
5. Chernicky, J. P., Gossett, B. J., and Murphy, T. R. 1984. Factors influencing control of annual grasses with sethoxydim or RO-13-8895. Weed Sci. 32:174177.Google Scholar
6. Colby, S. R. 1967. Calculating synergistic and antagonistic response of herbicide combinations. Weeds 15:2022.CrossRefGoogle Scholar
7. Dortenzio, W. A. and Norris, R. F. 1980. The influence of soil moisture on the foliar activity of diclofop. Weed Sci. 28:534539.Google Scholar
8. Fawcett, J. A., Harvey, R. G., Arnold, W. E., Bauman, T. T., Eberlein, C. V., Kells, J. J., Moshier, L. J., Slife, F. W., and Wilson, R. G. 1987. Influence of environment on corn (Zea mays) tolerance to sethoxydim. Weed Sci. 35:568575.Google Scholar
9. Fletcher, R. A. and Drexler, D. M. 1980. Interactions of diclofop-methyl and 2,4-D in cultivated oats (Avena sativa). Weed Sci. 28: 363366.Google Scholar
10. Foreman, M. H. and Field, R. J. 1986. Drought induced tolerance to diclofop-methyl in cultivated oat. Proc. 39th New Zealand Weed and Pest Control Conf. 267271.Google Scholar
11. Hamill, A. S. and Penner, D. 1973. Interactions of alachlor and carbofuran. Weed Sci. 21:330335.Google Scholar
12. Hatzios, K. K. 1983. Herbicide antidotes: development, chemistry, and mode of action. Adv. Agron. 36:265315.Google Scholar
13. Jain, J. C., Quick, W. A., and Hsiao, A. I. 1982. Studies of acid-soluble phosphorous compounds in genetically pure lines of Avena fatua with different dormancy characteristics. Can. J. Bot. 60:20992104.Google Scholar
14. Kocher, H., Kellner, H. M., Lotzch, K., Dorn, E., and Wink, O. 1982. Mode of action and metabolic fate of the herbicide fenoxaprop-ethyl, HOE 33171. Proc. 1982 Br. Crop Conf.-Weeds 1:341347.Google Scholar
15. Nalewaja, J. D., Gillespie, G. R., and Dexter, A. G. 1984. Postemergence grass and broadleaf herbicide interactions. (Abstract). Proc. N. Cent. Weed Control Conf. 39:2021.Google Scholar
16. Nalewaja, J. D., Miller, S. D., and Dexter, A. G. 1982. Postemergence grass and broadleaf herbicide interactions. Proc. N. Cent. Weed Control Conf. 37:7780.Google Scholar
17. Naylor, J. M. and Fedec, P. 1978. Dormancy studies in seeds of Avena fatua. 8. Genetic diversity affecting response to temperature. Can. J. Bot. 56:22242229.Google Scholar
18. Naylor, J. M. and Jana, S. 1976. Genetic adaption for seed dormancy in Avena fatua . Can. J. Bot. 54:306312.Google Scholar
19. Olson, W. A. and Nalewaja, J. D. 1981. Antagonistic effects of MCPA on wild oat (Avena fatua) control with diclofop. Weed Sci. 29:566571.Google Scholar
20. Price, S. C., Hill, J. E., and Allard, R. W. Genetic diversity for herbicide reaction in plant populations. Weed Sci. 31:652657.Google Scholar
21. Qureshi, F. A. and Vanden Born, W. A. 1979. Interaction of diclofop-methyl and MCPA on wild oats (Avena fatua). Weed Sci. 27:202205.CrossRefGoogle Scholar
22. Sorenson, V. M., Meggitt, W. F., and Penner, D. 1987. The interaction of acifluorfen and bentazon in herbicidal combinations. Weed Sci. 35: 449456.Google Scholar