Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.442 Render date: 2021-03-06T03:14:02.115Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Solanum ptycanthum resistance to acetolactate synthase inhibitors

Published online by Cambridge University Press:  20 January 2017

Dean S. Volenberg
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706
Chris M. Boerboom
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706
Corresponding

Abstract

Solanum ptycanthum plants putatively resistant to acetolactate synthase (ALS) inhibitors were identified in a Wisconsin Glycine max field in 1999. Three- to four-leaf-stage S. ptycanthum plants in the greenhouse were 150, 120, and 5.9-fold resistant to imazethapyr, imazamox, and primisulfuron, respectively, compared with susceptible plants. In vivo ALS was 170- and less than 20-fold more resistant to imazethapyr and primisulfuron, respectively. These results suggested that the S. ptycanthum accession was highly resistant to imazethapyr and imazamox, and that resistance was associated with insensitive ALS. This is the first confirmed occurrence worldwide of S. ptycanthum resistance to ALS inhibitors.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bassett, I. J. and Munro, D. B. 1985. The biology of Canadian weeds. 67. Solanum ptycanthum Dun., S. nigrum L. and S. sarrachoides Sendt. Can. J. Plant Sci. 65:401414.CrossRefGoogle Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.CrossRefGoogle Scholar
Foes, M. J., Vigue, G., Stoller, E. W., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Heap, I. 1999. International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. Internet: www.weedscience.com.Google Scholar
Hermanutz, L. 1991. Outcrossing in the weed Solanum ptycanthum (Solanaceae): a comparison of agrestal and ruderal populations. Am. J. Bot. 78:638646.CrossRefGoogle Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. A. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.Google Scholar
Mallory-Smith, C., Hendrickson, P., and Mueller-Warrant, G. 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47:256257.Google Scholar
Ogg, A. G. Jr., Rogers, B. S., and Schilling, E. E. 1981. Characterization of black nightshade (Solanum nigrum) and related species in the United States. Weed Sci. 29:2732.Google Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9:1722 Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43:527535.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Solanum ptycanthum resistance to acetolactate synthase inhibitors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Solanum ptycanthum resistance to acetolactate synthase inhibitors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Solanum ptycanthum resistance to acetolactate synthase inhibitors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *