Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T06:46:56.666Z Has data issue: false hasContentIssue false

Mechanism of Inheritance of Diclofop Resistance in Italian Ryegrass (Lolium multiflorum)

Published online by Cambridge University Press:  12 June 2017

Kevin J. Betts
Affiliation:
Plant Sci. Res. Unit, U.S. Dep. Agric., Agric. Res. Serv., Univ. Minnesota, St. Paul, MN 55108
Nancy J. Ehlke
Affiliation:
Plant Sci. Res. Unit, U.S. Dep. Agric., Agric. Res. Serv., Univ. Minnesota, St. Paul, MN 55108
Donald L. Wyse
Affiliation:
Plant Sci. Res. Unit, U.S. Dep. Agric., Agric. Res. Serv., Univ. Minnesota, St. Paul, MN 55108
John W. Gronwald
Affiliation:
Plant Sci. Res. Unit, U.S. Dep. Agric., Agric. Res. Serv., Univ. Minnesota, St. Paul, MN 55108
David A. Somers
Affiliation:
Dep. Agron. and Plant Genet., Univ. Minnesota, St. Paul, MN 55108

Abstract

A diclofop-methyl-resistant biotype of Italian ryegrass was characterized to determine the expression and inheritance of herbicide resistance and whether this trait was due to the presence of a diclofop-insensitive form of acetyl-coenzyme A carboxylase (ACCase). At the whole plant level, the resistant biotype was > 93-fold more resistant to diclofop-methyl than the susceptible biotype. Crosses of diclofop-resistant and –susceptible plants were performed to produce F1 plants. No maternal effects were evident in responses of reciprocal F1 plants to diclofop. GR50 diclofop rates determined for resistant, F1, and susceptible plants were 15, 6.3, and 0.16 kg ha−1, respectively. F2 populations treated with a 7.5 kg ha−1 rate of diclofop exhibited three injury response phenotypes 3 wk after treatment: a susceptible (S) phenotype which was killed, an intermediate resistance (I) phenotype with severe injury, and a resistant (R) phenotype with little or no injury. Testcross progeny exhibited only I and S phenotypes. Observed segregation of phenotypes in F2 and testcross populations conformed to segregation ratios predicted for a trait with inheritance controlled by a single partially dominant nuclear gene. ACCase activity determined in crude cell-free extracts of resistant, F1, and susceptible biotypes exhibited I50 values of 50, 20, and 0.7 μM diclofop, respectively. A positive relationship between the injury response phenotype and site of action (ACCase) response to diclofop was evident in both F1 and F2 populations. In extracts from R, I, and S phenotype F2 plants, 20 μM diclofop acid inhibited ACCase-mediated incorporation of 14C by 27.1, 45.1, and 78.9%, respectively. The ACCase data are consistent with the hypothesis that diclofop resistance in Italian ryegrass is conferred by a diclofop-insensitive form of ACCase.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1992 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brewster, B. D., Appleby, A. P., and Spinner, R. L. 1977. Control of Italian ryegrass and wild oats in winter wheat with HOE 23408. Agron. J. 69:911913.CrossRefGoogle Scholar
2. Burton, J. D., Gronwald, J. W., Sommers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of acetyl-coenzyme A carboxylase by herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Comm. 148:10391044.CrossRefGoogle ScholarPubMed
3. Crowder, L. V. 1953. Interspecific and intergeneric hybrids of Festuca and Lolium . J. Hered. 44:195203.CrossRefGoogle Scholar
4. Duncan, C. N. and Weller, S. C. 1987. Heritability of glyphosate susceptibility among biotypes of field bindweed. J. Hered. 78:257260.CrossRefGoogle Scholar
5. Focke, M. and Lichtenthaler, H. 1987. Inhibition of acetyl-coenzyme A carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch. 42c:13611363.CrossRefGoogle Scholar
6. Fuerst, E. P. and Vaughn, K. C. 1990. Mechanisms of paraquat resistance. Weed Technol. 4:150156.CrossRefGoogle Scholar
7. Gronwald, J. W., Eberlein, C. V., Betts, K. J., Rosow, K. M., Ehlke, N. J., and Wyse, D. L. 1989. Diclofop resistance in a biotype of Italian ryegrass. Plant Physiol. 89(Suppl.):115.Google Scholar
8. Heap, J. and Night, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst Agric. Sci. 48:157158.Google Scholar
9. Hirschberg, J., and McIntosh, L. 1983. Molecular basis for herbicide resistance in Amaranthus hybridus . Science 222:13461349.CrossRefGoogle ScholarPubMed
10. Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
11. Khodayari, K., Frans, R. E., and Collins, F. C. 1983. Diclofop—a selective herbicide for Italian ryegrass control in winter wheat. Weed Sci. 31:436438.CrossRefGoogle Scholar
12. Kobeck, K., Focke, M., and Lichtenthaler, H. 1988. Fatty acid biosynthesis and acetyl-CoA carboxylase as target of diclofop, fenoxaprop and other aryloxyphenoxypropionate herbicides. Z. Naturforsch. 43c:4754.CrossRefGoogle Scholar
13. LeBaron, H. M. and Gressel, J. 1982. Herbicide resistance in plants. John Wiley and Sons, New York.Google Scholar
14. Leibl, R. and Worsham, A. D. 1987. Interference of Italian ryegrass in wheat. Weed Sci. 35:819823.CrossRefGoogle Scholar
15. Love, R. M. 1947. Interspecific and intergeneric hybridization in forage crop improvement. Am. Soc. Agron. J. 39:4146.CrossRefGoogle Scholar
16. Mather, K. 1938. The measurement of linkage in heredity. Methuen & Co. Ltd., London.Google Scholar
17. Matthews, J. M., Holtum, J. A., Liljegren, D. R., Furness, B., and Powles, S. B. 1990. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 94:11801186.CrossRefGoogle ScholarPubMed
18. Murphy, T. R., Gossett, B. J., and Toler, J. E. 1986. Growth and development of dinitroaniline susceptible and resistant goosegrass biotypes under noncompetitive conditions. Weed Sci. 34:704710.CrossRefGoogle Scholar
19. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:441470.CrossRefGoogle Scholar
20. Parker, W. B., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gengenbach, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Nat. Acad. Sci. 87:71757179.CrossRefGoogle ScholarPubMed
21. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
22. Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18:614616.CrossRefGoogle Scholar
23. Shimabukuru, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27:615623.CrossRefGoogle Scholar
24. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76.CrossRefGoogle ScholarPubMed
25. Stanger, C. E. and Appleby, A. P. 1989. Italian ryegrass (Lolium multiflorium) accessions tolerant to diclofop. Weed Sci. 37:350352.CrossRefGoogle Scholar
26. Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca spp. Weed Sci. 37:512516.CrossRefGoogle Scholar
27. Vaughan, K. C. 1985. Physical basis for maternal inheritance of triazine resistance in Amaranthus hybridum . Weed Res. 25(1):1519.CrossRefGoogle Scholar